STTR——《Revisiting Stereo Depth Estimation From a Sequence-to-Sequence Perspective with Transformers》
论文链接:
STTR
代码链接:
STTR
本文从Seq2Seq的角度重新审视了深度估计问题,使用位置信息和注意力将cost volume construction替换为密集的像素匹配。表现SOTA!性能优于Bi3D、GwcNet和LEAStereo网络,代码刚刚开源!
一.本文创新点:
1. 放宽了固定视差范围的限制;
2. 识别被遮挡的区域并提供估计的置信度;
3. 在匹配过程中施加了唯一性约束。
二.网络结构分析:
1. Feature Extractor
使用了沙漏网络结构,编码部分使用残差和金字塔池化,为了实现更高效的全局上下文采集。解码部分使用转置卷积&#x