基于反向学习策略的麻雀搜索算法
1.反向学习策略
反向学习策略是由 Tizhoosh 于 2005 年提出的,目前已在 GA、DE、ACO 和 BBO 等群体智能优化算法中得到了成功的应用。
定义1. 反向点。假设在 [ l , u ] [l,u] [l,u]上存在数 x x x,则 x x x 的反向点定义为 x ′ = l + u - x x' = l + u - x x′=l+u-x。将反向点的定义扩展到 D D D 维空间,设 p = ( x 1 , x 2 , … , x D ) p =(x_1 ,x_2 ,…,x_D ) p=(x1,x2,…,xD)为 D D D 维空间中的一个点,其中 x i ∈ [ l i , u i ] x_i ∈[l_i ,u_i ] xi∈[li,ui], i = 1 , 2 , … , D i =1,2,…,D i=1,2,…,D,则其反向点 p ′ = ( x 1 ′ , x 2 ′ , … , x D ′ ) p' = (x'_1 ,x'_2 ,…,x'_D ) p′=(x1′,x2′,…,xD′),其中 x i ′ = l i + u i − x i x'_i = l_i +u_i-x_i xi′=li+ui−xi 。
根据上述定义,采用反向学习策略来产生初始种群个体的
步骤如下:
a) 在搜索空间中随机初始化 N 个麻雀个体位置 x i , j ( i = 1 , 2 , . . . , D ; j = 1 , 2 , . . . , N ) x_{i,j}(i=1,2,...,D;j=1,2,...,N) xi,j(i=1,2,...,D;j=1,2,...,N)作为初始种群 R P RP RP;
b) 根据定义 1,初始种群
R
P
RP
RP中的每个麻雀个体
x
i
x_i
xi 的反向
个体
x
i
′
x'_i
xi′ 构成反向种群
O
P
OP
OP;
c) 合并种群
R
P
RP
RP和
O
P
OP
OP,将其 2N 个麻雀个体按照适应度值
进行升序排序,选取适应度值前 N 个麻雀个体作为初始种群。
2.基于反向学习策略的麻雀搜索算法
基础麻雀算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/108830958
该改进主要是在初始化种群时,利用反向学习策略初始化种群
算法流程
Step1: 利用反向学习策略初始化种群,迭代次数,初始化捕食者和加入者比列。
Step2:计算适应度值,并排序。
Step3:麻雀更新捕食者位置。
Step4:麻雀更新加入者位置。
Step5:麻雀更新警戒者位置。
Step6:计算适应度值并更新麻雀位置。
Step7:是否满足停止条件,满足则退出,输出结果,否则,重复执行Step2-6;