路径规划算法:基于模拟退火优化的路径规划算法- 附代码

该文探讨了使用模拟退火算法进行路径规划,特别是在移动机器人的场景中寻找最短路径。算法考虑了环境约束,如地图边界和障碍物,适应度函数定义为路径长度。在MATLAB中实现了算法,并提供了代码示例,支持自定义地图和起点终点。
摘要由CSDN通过智能技术生成

路径规划算法:基于模拟退火优化的路径规划算法- 附代码


摘要:本文主要介绍利用智能优化算法模拟退火算法来进行路径规划。

1.算法原理

模拟退火算法原理请参考:网络博客

1.1 环境设定

在移动机器人的路径优化中,每个优化算法的解代表机器人的一条运动路径。优化算法会通过优化计算在众多路径中找出一条最优路径。
优化算法的设定必须和机器人运动环境模型相对应。不失一般性,假设在用栅格法对机器人运动环境建模后得出的结果是 m×n 的矩形区域,坐标值从 1 开始,如图1 。其中坐标原点栅格代表机器人的初始位置,坐标 (m,n)对应的栅格代表机器人的移动目标位置。优化算法设定的一个重要内容是确定优化算法的数学表达形式,在这里这个问题转化为用一个向量表示机器人的移动路径。经过分析发现,尽管栅格法建立的模型对空间进行了离散化,但本质上机器人的移动路径依然是连续的。

在这里插入图片描述

图1.栅格地图

1.2 约束条件

对于机器人的路径优化来说,其运动路径必须局限在栅格空间内,即搜索不能越过栅格的矩形边界。此外,还应受障碍物的限制,即机器人的运动轨迹不能穿过存在障碍物的栅格区域。

1.3 适应度函数

在本文的建模方法中,本文路径规划目标是路径长度最短。路径的长度可以表示为:

L ( P a t h ) = ∑ i = 0 n − 1 ( x l i + 1 − x l i ) 2 + ( y l i + 1 − y l i ) 2 (1) L(Path) = \sum_{i=0}^{n-1}\sqrt{(xl_{i+1} - xl_i)^2 + (yl_{i+1} - yl_{i})^2}\tag{1} L(Path)=i=0n1(xli+1xli)2+(yli+1yli)2 (1)
其中(x,y)是路径中间点的坐标

利用模拟退火算法对上式进行寻优,找到最短路径。模拟退火算法参数设定如下:

%% 模拟退火算法参数设置
dim=length(noLM);%维度,即为非障碍物个数。
numLM0=round((EndPoint(1)-StartPoint(1))/4);%每次迭代选取的的中间路径点个数,可调
lb=0;%下边界
ub=1;%上边界
Max_iteration = 100;%最大迭代次数
SearchAgents_no = 30;%种群数量
fobj = @(x)fun(x,noS,noE,numLM0,net);%适应度函数

2.算法结果

在这里插入图片描述

3.MATLAB代码

本程序中,支持1.地图任意创建保存。2.其实点任意更改。

4.参考文献

[1]罗阳阳,彭晓燕.基于改进PSO的四轮移动机器人全局路径规划[J].计算机仿真,2020,37(07):373-379.

[2]鲁丹. 粒子群算法在移动机器人路径规划中的应用研究[D].武汉科技大学,2009.

以下是一个基于水母优化的机器人路径规划算法的简化示例 MATLAB 代码。请注意,这只是一个简化的示例,实际的算法可能需要更多的细节和参数调整。 ```matlab % 参数设置 MaxIter = 100; % 最大迭代次数 Npop = 50; % 种群数量 % 初始化种群 Population = InitializePopulation(Npop); % 初始化种群 for iter = 1:MaxIter % 评估适应度 Fitness = EvaluateFitness(Population); % 根据目标函数计算适应度 % 选择操作 SelectedPopulation = Selection(Population, Fitness); % 根据适应度选择一部分个体 % 操作1:局部搜索 LocalSearchPopulation = LocalSearch(SelectedPopulation); % 对选择的个体进行局部搜索 % 操作2:水母扩散 JellyfishPopulation = JellyfishDispersion(LocalSearchPopulation); % 对局部搜索的个体进行水母扩散 % 更新种群 Population = JellyfishPopulation; % 更新种群 % 显示当前最优解 [~, bestIdx] = max(Fitness); bestSolution = Population(bestIdx,:); disp(['Iteration:', num2str(iter), ' Best Solution:', num2str(bestSolution)]); end % ------------------ 函数实现 ------------------ % 初始化种群 function Population = InitializePopulation(Npop) % 根据问题需求,随机生成初始种群 % 返回一个 Npop x n 矩阵,每行代表一个个体的解 end % 计算适应度 function Fitness = EvaluateFitness(Population) % 根据目标函数计算适应度 % 返回一个 Npop x 1 的列向量,每个元素为对应个体的适应度值 end % 选择操作 function SelectedPopulation = Selection(Population, Fitness) % 根据适应度值选择一部分个体 % 返回一个 Npop x n 的矩阵,为选择出的个体集合 end % 局部搜索 function LocalSearchPopulation = LocalSearch(SelectedPopulation) % 对选择的个体进行局部搜索操作,例如使用局部优化算法(如遗传算法模拟退火等) % 返回一个 Npop x n 的矩阵,为局部搜索后的个体集合 end % 水母扩散 function JellyfishPopulation = JellyfishDispersion(LocalSearchPopulation) % 对局部搜索的个体进行水母扩散操作,引入随机性和多样性 % 返回一个 Npop x n 的矩阵,为水母扩散后的个体集合 end ``` 请注意,以上代码仅为示例,并未完整展示所有细节和具体实现。实际使用时,您可能需要根据具体问题进行调整和细化。此外,还需要根据问题的特点和要求,自定义目标函数、选择操作、局部搜索和水母扩散等算子的具体实现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值