基于卷积优化算法优化的Tsallis相对熵图像多阈值分割
摘要:本文主要介绍利用卷积优化算法来优化Tsallis相对熵的图像多阈值分割算法。
1.卷积优化算法
卷积优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/130000907
2.Tsallis相对熵多阈值图像分割原理
设 I ( x , y ) I(x,y) I(x,y)为待分割图像,图像的尺寸为 m ∗ n m*n m∗n,图像的最大灰度级为 L L L,其中 1 ≤ x ≤ m 1\leq x \leq m 1≤x≤m, 1 ≤ y ≤ n 1\leq y \leq n 1≤y≤n。图像中对应灰度级 i i i的像素数目表示为 n i n_i ni ,图像的灰度级直方图分布概率可以表示为 H = { h i ∣ i = 1 , 2 , . . . , L } H=\{h_i|i=1,2,...,L\} H={hi∣i=1,2,...,L},其中 h i = n i m ∗ n h_i = \frac{n_i}{m*n} hi=m∗nni表示灰度级 i i i在图像中出现的频率。设阈值个数为 N N N,第 j j j个阈值的值为 t j t_j tj, N N N个阈值将图像分为 N + 1 N+1 N+1个区域: A 1 、 A 2 、 … A N + 1 A_1 、A_2 、…A_{N+1} A1、A2、…AN+1 。
定义
A
1
A_1
A1 到
A
N
+
1
A_{N+1}
AN+1 的类概率为:
P
1
=
∑
i
=
1
t
1
h
i
(1)
P_1 = \sum_{i=1}^{t_1}h_i \tag{1}
P1=i=1∑t1hi(1)
P j = ∑ i = t j − 1 t j h i ( 2 ≤ j ≤ N ) (2) P_j=\sum_{i=t_j-1}^{t_j}h_i(2\leq j \leq N) \tag{2} Pj=i=tj−1∑tjhi(2≤j≤N)(2)
P N + 1 = ∑ i = t N L h i , i = 1 , 2 , . . . , L (3) P_{N+1}=\sum_{i=t_N}^Lh_i,i=1,2,...,L\tag{3} PN+1=i=tN∑Lhi,i=1,2,...,L(3)
其中
P
1
+
P
2
+
…
+
P
N
+
1
=
1
P_1 +P_2 +…+P_{N+1} =1
P1+P2+…+PN+1=1。同时定义
A
1
A_1
A1 到
A
N
+
1
A_{N+1}
AN+1 的灰度级类均值为:
u
1
=
∑
i
=
1
t
1
i
h
i
/
P
1
(4)
u_1 = \sum_{i=1}^{t_1}ih_i/P_1 \tag{4}
u1=i=1∑t1ihi/P1(4)
u j = ∑ i = t j − 1 t j i h i / P j , ( 2 ≤ j ≤ N ) (5) u_j=\sum_{i=t_j-1}^{t_j}ih_i/P_j,(2\leq j \leq N)\tag{5} uj=i=tj−1∑tjihi/Pj,(2≤j≤N)(5)
u N + 1 = ∑ i = t N L i h i / P N + 1 , i = 1 , 2 , . . . , L (6) u_{N+1}=\sum_{i=t_N}^Lih_i/P_{N+1},i=1,2,...,L\tag{6} uN+1=i=tN∑Lihi/PN+1,i=1,2,...,L(6)
定义
A
1
A_1
A1 到
A
N
+
1
A_{N+1}
AN+1 的灰度级类方差为:
σ
1
2
=
∑
i
=
1
t
1
(
i
−
u
1
)
2
/
P
1
(7)
\sigma_1^2 = \sum_{i=1}^{t_1}(i-u_1)^2/P_1 \tag{7}
σ12=i=1∑t1(i−u1)2/P1(7)
σ j 2 = ∑ i = t j − 1 t j ( i − u j ) 2 / P j (8) \sigma_j^2 = \sum_{i=t_{j-1}}^{t_j}(i-u_j)^2/P_j\tag{8} σj2=i=tj−1∑tj(i−uj)2/Pj(8)
σ N + 1 2 = ∑ i = t N L ( i − u N + 1 ) 2 / P N + 1 , i = 1 , 2 , . . . L (9) \sigma_{N+1}^2=\sum_{i=t_N}^L(i-u_{N+1})^2/P_{N+1},i=1,2,...L \tag{9} σN+12=i=tN∑L(i−uN+1)2/PN+1,i=1,2,...L(9)
灰度级
i
i
i关于
A
1
A_1
A1 到
A
N
+
1
A_{N+1}
AN+1 的类概率为:
p
j
i
=
1
2
π
σ
j
e
x
p
[
−
(
i
−
u
j
)
2
2
σ
j
2
]
,
i
=
1
,
2
,
.
.
.
,
L
;
j
=
1
,
2
,
.
.
.
,
N
+
1
(10)
p_j^i = \frac{1}{\sqrt{2\pi}\sigma_j}exp[-\frac{(i-u_j)^2}{2\sigma_j^2}],i=1,2,...,L;j=1,2,...,N+1 \tag{10}
pji=2πσj1exp[−2σj2(i−uj)2],i=1,2,...,L;j=1,2,...,N+1(10)
定义分割后图像灰度级的拟合高斯分布为:
R
=
{
r
i
∣
r
i
=
P
1
∗
p
1
i
+
P
2
∗
p
2
i
+
.
.
.
+
P
N
+
1
∗
p
N
+
1
i
,
i
=
1
,
2
,
.
.
.
,
L
}
(11)
R=\{r_i|r_i=P_1*p_1^i+P_2*p_2^i+...+P_{N+1}*p_{N+1}^i,i=1,2,...,L\}\tag{11}
R={ri∣ri=P1∗p1i+P2∗p2i+...+PN+1∗pN+1i,i=1,2,...,L}(11)
图像的阈值化准则即 Tsallis 相对熵函数:
J
p
(
H
∣
R
)
=
1
q
−
1
{
∑
i
=
1
L
[
h
i
(
r
i
/
h
i
)
q
+
r
i
(
h
i
/
r
i
)
q
]
−
2
}
(12)
J_p(H|R)=\frac{1}{q-1}\{\sum_{i=1}^L[h_i(r_i/h_i)^q+r_i(h_i/r_i)^q]-2\} \tag{12}
Jp(H∣R)=q−11{i=1∑L[hi(ri/hi)q+ri(hi/ri)q]−2}(12)
在对图像进行分割时,如果能够找到
N
N
N个分割阈值
t
1
,
t
2
,
.
.
.
,
t
N
t_1 ,t_2 ,...,t_N
t1,t2,...,tN使式(12)值最小,则这些阈值为最优阈值,最佳分割阈值 T 的集合的获取函数为:
T
=
a
r
g
m
i
n
1
≤
t
≤
L
[
J
p
(
H
∣
R
)
]
(13)
T=argmin_{1 \leq t\leq L}[J_p(H|R)]\tag{13}
T=argmin1≤t≤L[Jp(H∣R)](13)
3.适应度函数设计
根据Tsallis相对熵多阈值图像分割原理可知,卷积优化函数的适应度函数,即为:
f
i
t
n
e
s
s
=
a
r
g
m
i
n
1
≤
t
≤
L
[
J
p
(
H
∣
R
)
]
(14)
fitness=argmin_{1 \leq t\leq L}[J_p(H|R)]\tag{14}
fitness=argmin1≤t≤L[Jp(H∣R)](14)
搜索一组阈值,使得Tsallis相对熵值最小。。
4.实验结果
卷积优化算法的参数设置如下:
%% 基于卷积优化算法的Tsallis相对熵多阈值分割
clear all
clc
I = imread('lena.tiff');%读取图像
SearchAgents_no=50; %种群数量
Max_iteration=50; % 最大迭代次数
dim = 3;%设定阈值个数
lb = ones(1,dim); %下边界1
ub = 255.*ones(1,dim);%上边界255
fobj =@(thresh)fun(I,thresh);%Tsallis 度量值
5.参考文献
[1]李粉红,卢晶,张志光.一种风驱动优化Tsallis相对熵的图像多阈值分割方法[J].红外技术,2020,42(10):994-1000.