- 博客(9)
- 收藏
- 关注
原创 220609_Efficient Uncertainty-aware Decision-making for Automated Driving Using Guided Branching
EUDM规划方法,基于POMDP
2022-06-23 18:35:41 3538
原创 220528_Model Predictive Trajectory Planning for Automated Driving
MPC框架论文
2022-06-23 18:34:11 2296
原创 论文阅读20220523_Baidu Apollo EM Planner
0、摘要主要工作:提出了一种分层的路径规划以及一种鲁棒的跟踪控制框架。1、该系统的顶层是一个多车道策略,通过比较并行计算的车道级轨迹来处理车道变换场景。2、 在车道级轨迹生成器中,它基于Frenet框架迭代求解路径和速度优化。3、 在路径和速度优化方面,将动态规划与样条二次规划相结合,构建了一个可扩展且易于优化的框架,可同时处理交通规则、障碍决策和平滑度。apollo/modules/planning at master · ApolloAuto/apollo · GitHub1、介
2022-05-27 13:55:47 2116
原创 论文阅读220403_Autonomous Driving on Curvy Roads Without Reliance on Frenet Frame: A Cartesian-Based
Autonomous Driving on Curvy Roads Without Reliance on Frenet Frame: A Cartesian-Based Trajectory Planning Method 20210、摘要 主要工作:提出了一种迭代计算框架来累积处理复杂约束。每次迭代求解一个中间问题,其中包含线性和可处理尺度的避碰约束和软化的运动学约束。 开源链接 :https://github.com/libai1943/Cartesian...
2022-04-03 01:02:30 3857
原创 论文阅读220304_Robust Online Path Planning for Autonomous Vehicle Using Sequential Quadratic Programming
220304_Robust Online Path Planning for Autonomous Vehicle Using Sequential Quadratic Programming0、摘要参考轨迹->生成一条优秀的轨迹主要工作:提出了一种分层的路径规划以及一种鲁棒的跟踪控制框架。几分之一秒内完成一次规划1、介绍 路径规划的任务:不能碰、舒适、快速以应对复杂变化的路况信息。1.1 步骤: -使用Frenet frame - ...
2022-03-07 00:04:56 2884
原创 论文阅读220228_Safe Trajectory Generation for Complex Urban Environments Using Spatio-Temporal Semantic
0、摘要提出了一种新颖的时空语义走廊( spatio-temporal semantic corridor , SSC)开源代码:https://github.com/HKUST-Aerial-Robotics/spatiotemporal_semantic_corridorSafe Trajectory Generation for Complex Urban Environments Using Spatio-Temporal Semantic Corridor_20191、介绍 .
2022-02-28 01:59:22 3733 1
原创 论文阅读20220114-Autonomous Vehicle Motion Planning via Recurrent Spline Optimization
0、摘要 从优化的视角来看,车辆的运动规划可以被视作一个非凸约束[KP1]的非线性优化。对初值非常敏感。 将自动驾驶的规划问题变成两个方面:一个是能够避开静态障碍物的一个轨迹+一个能够避开动态障碍物的速度规划。 将这个问题转化为一个凸性的问题,来确保全局的最优。1、介绍 搜索算法需要将道路离散,所以即便它的最优性有保证,但是其精度不高。优化法容易进入局部最优。 主要实现了基于凸优化的自动驾驶运动规划,主要解决障碍、非线性系统与系统限制。主要工作:...
2022-01-14 01:28:33 3234
原创 轨迹规划论文阅读20220109-A Real-Time Motion Planner with Trajectory Optimization for Autonomous Vehicles
0、摘要 提出了一种基于轨迹优化的高效实时自动驾驶运动规划方法。将轨迹空间离散化->利用cost functions 来找到最佳轨迹。 引[CSDN1]: 规划器首先把规划空间离散化,并根据一组代价函数搜索最优轨迹,然后对轨迹的path和speed进行迭代优化。文中提出了一种“post-optimization”的方法,可以弥补离散化难以求出最优解的问题(离散越密,越接近最优解),并可以减少52%的规划时间。1、介绍A. 背景 自动驾驶复杂的情况与搜索方法...
2022-01-09 15:34:51 3445
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人