CINTA作业七

这篇博客探讨了群论中的正规子群概念。通过充分必要条件证明了两个正规子群的乘积也是正规子群,并展示了如何通过群的同态性质来判断一个群是否为交换群。此外,还详细解释了正规子群的陪集性质及其应用,具体到证明任意元素的左陪集等于右陪集,从而得出正规子群的结论。
摘要由CSDN通过智能技术生成

3、如果 H1 和 H2 是群 G 的正规子群,证明 H1H2 也是群 G 的正规子群。

令H1=K,H2=H(方便识别)

充分性:因为HK=KH,则hk(h1k1)^-1=h(kk1^-1h1^-1)=hh'k'属于HK,故HK是子群

必要性:因为HK是子群,所以(hk)^-1=k^-1h^-1属于KH,即HK包含于KH

又kh=(h^-1k^-1)^-1属于HK,故KH包含于HK,因此HK=KH

5、

若f是G到G的同态.任取a,b属于G
b ⋅ a b = a ⋅ b 2 , b ⋅ a = a ⋅ b b·ab=a·b^2,b·a=a·bb⋅ab=a⋅b 2b⋅a=a⋅b
故G是交换群.
若G是交换群.任取a,b属于G
故f是G到G的同态.

7、

对任意h∈H,有gh=h ,
对任意h ′ ∈ H ′ , 有 h ′ ∈ G 但 h ′ ∉ H , 在 H 中 存 在 h 1 , h 2 使 得 : h^{'}\in\mathbb H^{'},有h^{'}\in \mathbb G但h^{'}\notin\mathbb H,在\mathbb H中存在h_1,h_2使得:h 
′∈H  ,有h ′∈G但h ′ ∈ /H,在H中存在h 1,h 2
 使得:
h ′ = g h 1 ∈ g H , h ′ = h 2 g ∈ H g h^{'}=gh_1\in g\mathbb H,h^{'}=h_2g\in \mathbb Hgh ′ =gh 1∈gH,h =h2g∈Hg所以g H = H ′ = H g g\mathbb H=\mathbb H^{'}=\mathbb HggH=H ′ =Hg综上,对任意g ∈ G , 均 有 g H = H g g\in \mathbb G,均有g\mathbb H=\mathbb Hgg∈G,均有gH=Hg,即H 是 G 的 正 规 子 群 。 \mathbb H是\mathbb G的正规子群。H是G的正规子群。
 

9、

H的全体左陪集的并就是G [G:H]=2说明不同左陪集只有2个,显然一个是H,另一个设为aH
则G=aH∪H 同理G=H∪Ha 

[G:H]=2推出 HUaH=G=HUaH,由此aH=Ha

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值