运用分治法和动态规划方法求解最大子数组问题

本文探讨了最大子数组问题的两种求解方法:分治法和动态规划法。通过详细解析算法思想及步骤,并给出具体实现代码,帮助读者深入理解这两种算法的特点及其应用。

运用分治法和动态规划方法求解最大子数组问题


问题描述

给定整数序列 a1,a2,...,an ,求该序列形如 jk=iak 子序列和的最大值:

max{0,max1ijnk=ijak}

问题求解

分治算法

运用分治法求解最大子段和问题。将原序列划分为两个规模尽量相等的子序列,设划分的中间位置为 mid,则原问题最大子段和包含的序列必然为下列 3 种情况之一:
左侧:完全位于序列 a1,...,amid
右侧:完全位于序列 amid+1,...,an
跨越两侧:位于序列 ai,...,aj 中,其中 1imidjn
那么最大子段和即为这三个区间的最大子段和的最大值。因此原问题可化为两个求解规模为 n/2 的子问题,和求解一个跨越中点的序列的最大子段和问题。其中第三种情况可分别求解序列 a1,...,amid amid+1,...,an 的最大子序列,然后将两者合并即可,因此该部分的时间复杂度为 Θ(n)。算法的时间复杂度可用递归的形式表示为:

T(n)={Θ(1),n=12T(n/2)+Θ(n),n>1

可得,算法的复杂度为 T(n)=Θ(nlgn) 。算法实现如下:

代码实现
struct subarray
{
    int low;
    int high;
    int sum;
};
    /***********find the max array in the interval [i...mid...j]***********/
    subarray maxCrossArray(vector<int> data, int low, int mid, int high)
    {
        subarray sa;

        int sumLeft = -INT_MAX;
        int sum = 0;
        for (int i = mid; i > low-1; i--)
        {
            sum = sum + data[i];
            if (sum > sumLeft)
            {
                sumLeft = sum;
                sa.low = i;
            }
        }

        sum = 0;
        int sumRifgt = -INT_MAX;
        for (int j = mid + 1; j < high+1; j++)
        {
            sum = sum + data[j];
            if (sum > sumRifgt)
            {
                sumRifgt = sum;
                sa.high = j;
            }
        }
        sa.sum = sumLeft + sumRifgt;
        return sa;
    }
        /**********Divide and conquer algorithm**********/
    subarray find(vector<int> data, int low, int high)
    {
        if (data.empty())
        {
            cout << "please check the input array is empty!" << endl;
            exit(-1);
        }
        else
        {
            subarray sa, saLeft, saRight, saCross;
            if (high == low)
            {
                sa.high = high;
                sa.low = low;
                sa.sum = data[low];
                return sa;
            }
            else
            {
                int mid = floor((low + high) / 2);
                saLeft = find(data, low, mid);
                saRight = find(data, mid + 1, high);
                saCross = maxCrossArray(data, low, mid, high);

                if (saLeft.sum >= saRight.sum && saLeft.sum >= saCross.sum)
                    return saLeft;
                else if (saRight.sum >= saLeft.sum && saRight.sum >= saCross.sum)
                    return saRight;
                else
                    return saCross;
            }
        }
    }

动态规划算法

最大子段和问题具有最优子结构性质。取规模为n的整数序列的子结构为 a1,...,an1 ,则原序列的最大子段和包含的序列要么是子结构的最大字段和序列,要么是 ai,...,an1,an ,其中 1in 。因此原问题的解可由子结构的解得到,具有最优子结构性质。

时间复杂度:已知序列 a1,..,aj 的最大子段和序列A(m,n),并记录形如 a1,...,aj 中的最大子段和序列A(i,j),求解序列 a1,...,aj+1 时,只需求解 max{sum(A(m,n)),sum(A(i,j)+A[j+1]),A[j]} ,即可得到新问题的解。设原问题的规模为n,则该算法的时间复杂度为 Θ(n) ,具有线性复杂度。

代码实现
    /*********Dynamic programming algorithm*********/
    subarray dp(vector<int> data, int low, int high)
    {
        subarray pre{low, low, data[low]};
        subarray saRight = pre;
        for (int i = low + 1; i < high + 1; i++)
        {
            if (data[i] >= (saRight.sum + data[i]))
            {
                saRight.sum = data[i];
                saRight.high = i;
                saRight.low = i;
            }
            else
            {
                saRight.sum += data[i];
                saRight.high = i;
            }
            if (saRight.sum >= pre.sum)
            {
                pre = saRight;
            }
        }
        return pre;
    }
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值