Get started building with Power BI(2)

For these software services, the Power BI service provides a collection of ready-made visuals that are pre-arranged on dashboards and reports for your organization. This collection of visuals is called an app. Apps get you up and running quickly, with data and dashboards that your organization has created for you. For example, when you use the GitHub app, Power BI connects to your GitHub account (after you provide your credentials) and then populates a predefined collection of visuals and dashboards in Power BI.

There are apps for all sorts of online services. The following image shows a page of apps that are available for different online services, in alphabetical order. This page is shown when you select the Get button in the Services box (shown in the previous image). As you can see from the following image, there are many apps to choose from.

Screenshot of the Power B I apps on the All apps tab.

For our purposes, we'll choose GitHub. GitHub is an application for online source control. When you select the Get it now button in the box for the GitHub app, the Connect to GitHub dialog box appears. Note that GitHub does not support Internet Explorer, so make sure you are working in another browser.

 

Screenshot of the Connect to GitHub dialog.

After you enter the information and credentials for the GitHub app, installation of the app begins.

Screenshot of the Installing an app message.

After the data is loaded, the predefined GitHub app dashboard appears.

Screenshot of the Github dashboard loaded.

In addition to the app dashboard, the report that was generated (as part of the GitHub app) and used to create the dashboard is available, as is the dataset (the collection of data pulled from GitHub) that was created during data import and used to create the GitHub report.

Screenshot of the Github navigation with arrows to Dashboard and Report tabs.

You can select any of the visuals and interact with them. As you do so, all the other visuals on the page will respond. For example, when the AdamBJ in the treemap on the Pull Requests report the other visuals on the page adjust to reflect that selection.

Screenshot of the Github app with the Pull Requests report selected.

Update data in the Power BI service

You can also choose to update the dataset for an app, or other data that you use in Power BI. To set update settings, select the schedule update icon for the dataset to update, and then use the menu that appears. You can also select the update icon (the circle with an arrow) next to the schedule update icon to update the dataset immediately.

Screenshot of scheduling an update for dashboards.

The Datasets tab is selected on the Settings page that appears. In the right pane, select the arrow next to Scheduled refresh to expand that section. The Settings dialog box appears on the canvas, letting you set the update settings that meet your needs.

Screenshot of the Datasets tab with Scheduled refresh highlighted.

 That's enough for our quick look at the Power BI service. There are many more things you can do with the service, and we'll cover these later in this module and in upcoming modules. Also, remember that there are many types of data you can connect to, and all sorts of apps, with more of both coming all the time.

Summary

Let's do a quick review of what we covered in this module.

Microsoft Power BI is a collection of software services, apps, and connectors that work together to turn your data into interactive insights. You can use data from single basic sources, like a Microsoft Excel workbook, or pull in data from multiple databases and cloud sources to create complex datasets and reports. Power BI can be as straightforward as you want or as enterprise-ready as your complex global business requires.

Power BI consists of three main elements—Power BI Desktop, the Power BI service, and Power BI Mobile—which work together to let you create, interact with, share, and consume your data the way you want.

Image of the Power B I cycle of use from Power B I Desktop to Power B I service to Power B I Mobile.

We also discussed the basic building blocks in Power BI:

  • Visualizations – A visual representation of data, sometimes just called visuals
  • Datasets – A collection of data that Power BI uses to create visualizations
  • Reports – A collection of visuals from a dataset, spanning one or more pages
  • Dashboards – A single-page collection of visuals built from a report
  • Tiles – A single visualization on a report or dashboard

In the Power BI service, we installed an app in just a few clicks. That app, a ready-made collection of visuals and reports, let us easily connect to a software service to populate the app and bring that data to life.

Finally, we set up a refresh schedule for our data, so that we know the data will be fresh when we go back to the Power BI service.

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值