Introducing Apache Spark and PySpark

 1.Apache Spark Component

  • Spark SQL and DataFrames + Datasets

            A module for working with structured data.

  • MLlib

            A scalable machine learning library.

  • Structured Streaming

           This makes it easy to build scalable fault-tolerant streaming applications.

  • GraphX (legacy)

     GraphX is Apache Spark’s library for graphs and graph-parallel computation.However, for graph analytics, GraphFrames is recommended instead of GraphX,which isn’t being actively developed as much and lacks Python bindings. GraphFrames is an open source general graph processing library that is similar to Apache Spark’s GraphX but uses DataFrame-based APIs.

2.Spark Versus PySpark Versus SparkSQL

3.AWS EMR, Azure Databricks, GCP Dataproc

4.PySpark Addresses Challenges of Data Science

倘若您觉得我写的好,那么请您动动你的小手粉一下我,你的小小鼓励会带来更大的动力。Thanks.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值