数值分析实验:已知插值节点序列,用拉格朗日(Lagrange)插值多项式计算函数L0(x)计算函数f(x)在点x0的近似值。
首先给出算法描述:
(1)给已知条件(X0,y0),(X1,y1),(X2,y2),…,(Xn,yn)点进行对应的包装操作和编号处理
(2)根据已知条件(X0,y0),(X1,y1),(X2,y2),…,(Xn,yn)和要求解的x值计算拉格朗日基函数:
2.1 首先计算每个朗格朗日基函数的分子 :
float molecule = (x-x0)(x-x1)…(x-xn)
2.2 接着计算每个朗格朗日基函数的分母:
float denominator =(Xk-x0)(Xk-x1)…(Xk-xn)
(3)计算
最终得出结果即为所求。
下面是C++的具体实现代码:
struct Point
{
Point(float x, float y) {
this->x = x;
this->y =y;
}
Point() {
}
float x; //坐标的x轴
float y; //坐标的y轴
int k = -1; //给每个已知点进行编号,表示第k个点,k = 0,1,2....n
};
//存放已知点编号完成后的动态向量
vector<Point> *vec = NULL;
/*
@param points 要初始化的已知点数组
@param len 数组长度
*/
void init(Point points[],int len)
{
vec = new vector<Point>();
for (int i = 0; i < len; i++)
{
//给每个点进行编号处理
points[i].k = i;
//将每个点放入到向量集合中
vec->push_back(points[i]);
}
}
/*
@to do: 获取连乘的结果
@param k 第k个点
@param X0 连乘中的被减数
@return float 返回结果
*/
float getContinuousMultiplication(int k,float x0) {
float result = 1; //连乘的结果
vector<Point>::iterator it;
//迭代进行(x-x0)*(x-x1)...*(x-xn)连乘
for (it = vec->begin(); it != vec->end(); it++)
{
if (k != (*it).k)
{
result = result * (x0 - (*it).x);
}
}
return result;
}
/*
@to do: 获取x0节点对应的朗格朗日函数值
@param X0 需要求解的x0的值
@return float 返回结果
*/
float getLagrangeValue(float x0) {
float molecule = 1; //基函数的分子
float denominator = 1; //基函数的分母
vector<Point>::iterator it;
float result = 0; //最终结果
for (it = vec->begin(); it!= vec->end(); it++)
{
//获取基函数分子的值
molecule = getContinuousMultiplication((*it).k, x0);
//获取基函数分母的值
denominator = getContinuousMultiplication((*it).k, (*it).x);
//获取基准函数的值
float basicfunctionValue = molecule / denominator;
//累加求得拉格朗日函数结果
result += (*it).y*basicfunctionValue ;
}
return result;
}
测试及运行结果:
int main01()
{
//测试数据
Point p1(0.4f,-0.9163f);
Point p2(0.5f,-0.6931f);
Point p3(0.6f,-0.5108f);
Point p4(0.7f,-0.3567f);
Point p5(0.8f,-0.2231f);
Point points[5] = {p1,p2,p3,p4,p5};
init(points,5);
float x = 0.54f;
float result = getLagrangeValue(x);
cout << "通过拉格朗日计算后的数当x="<< x <<"时其结果为:"<<result << endl;
system("pause");
return 0;
}