数值分析C++实现拉格朗日(Lagrange)插值多项式

数值分析实验:已知插值节点序列,用拉格朗日(Lagrange)插值多项式计算函数L0(x)计算函数f(x)在点x0的近似值。
首先给出算法描述:
(1)给已知条件(X0,y0),(X1,y1),(X2,y2),…,(Xn,yn)点进行对应的包装操作和编号处理
(2)根据已知条件(X0,y0),(X1,y1),(X2,y2),…,(Xn,yn)和要求解的x值计算拉格朗日基函数:在这里插入图片描述
2.1 首先计算每个朗格朗日基函数的分子 :
float molecule = (x-x0)(x-x1)…(x-xn)
2.2 接着计算每个朗格朗日基函数的分母:
float denominator =(Xk-x0)(Xk-x1)…(Xk-xn)
(3)计算
在这里插入图片描述
最终得出结果即为所求。

下面是C++的具体实现代码:

struct Point
 {
	 Point(float x, float y) {
		 this->x = x;
		 this->y =y;
	 }
	 Point() {
	 }
	 float x;			//坐标的x轴
	 float y;			//坐标的y轴
	 int k = -1;          //给每个已知点进行编号,表示第k个点,k = 0,1,2....n
 };
//存放已知点编号完成后的动态向量
 vector<Point> *vec = NULL;

 /*
 @param points  要初始化的已知点数组
 @param len 数组长度
 */
void init(Point points[],int len) 
{
	vec = new vector<Point>();
	for (int i = 0; i < len; i++)
	{
		//给每个点进行编号处理
		points[i].k = i;
		//将每个点放入到向量集合中
		vec->push_back(points[i]);
	}
}
/*
@to do: 获取连乘的结果
@param  k   第k个点
@param X0   连乘中的被减数
@return float 返回结果
*/
float getContinuousMultiplication(int k,float x0) {
	float result = 1;			//连乘的结果
	vector<Point>::iterator it;
	//迭代进行(x-x0)*(x-x1)...*(x-xn)连乘
	for (it = vec->begin(); it != vec->end(); it++)
	{
		if (k != (*it).k)
		{
			result = result * (x0 - (*it).x);
		}
		
	}
	return result;
}
/*
@to do: 获取x0节点对应的朗格朗日函数值
@param X0   需要求解的x0的值
@return float 返回结果
*/
float getLagrangeValue(float x0) {
	float molecule = 1;			//基函数的分子
	float denominator = 1;			//基函数的分母
	vector<Point>::iterator it;
	float result = 0;				//最终结果
	for (it = vec->begin(); it!= vec->end(); it++)
	{

		//获取基函数分子的值
		molecule = getContinuousMultiplication((*it).k, x0);
		//获取基函数分母的值
		denominator = getContinuousMultiplication((*it).k, (*it).x);
		//获取基准函数的值
		float basicfunctionValue = molecule / denominator;
		//累加求得拉格朗日函数结果
		result += (*it).y*basicfunctionValue  ;
	}

	return result;
}

测试及运行结果:

int main01()
{
	//测试数据
	Point p1(0.4f,-0.9163f);
	Point p2(0.5f,-0.6931f);
	Point p3(0.6f,-0.5108f);
	Point p4(0.7f,-0.3567f);
	Point p5(0.8f,-0.2231f);
	Point points[5] = {p1,p2,p3,p4,p5};
	init(points,5);
	float x = 0.54f;
  float result =	getLagrangeValue(x);
  cout << "通过拉格朗日计算后的数当x="<< x <<"时其结果为:"<<result << endl;
	system("pause");
	return 0;
}

在这里插入图片描述

  • 2
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
实验一 误差分析 一、实验目的及要求 1.了解误差分析对数值计算的重要性。 2.掌握避免或减小误差的基本方法。 二、实验设备 安装有C、C++或MATLAB的计算机。 三、实验原理 误差是指观测值与真值之差,偏差是指观测值与平均值之差。根据不同的算法,得到的结果的精度是不一样的。 四、实验内容及步骤 求方程ax2+bx+c=0的根,其中a=1,b= -(5×108+1),c=5×108 采用如下两种计算方案,在计算机上编程计算,将计算结果记录下来,并分析产生误差的原因。 ////////////////////////////// 实验二 Lagrange插值 一、实验目的及要求 1.掌握利用Lagrange插值法及Newton插值法求函数值并编程实现。 2.程序具有一定的通用性,程序运行时先输入节点的个数n,然后输入各节点的值( ),最后输入要求的自变量x的值,输出对应的函数值。 二、实验设备和实验环境 安装有C、C++或MATLAB的计算机。 三、算法描述 1. 插值的基本原理(求解插值问题的基本思路) 构造一个函数y=f(x)通过全部节点,即 (i=0、1、… n) 再用f(x)计算插值,即 2. 拉格朗日Lagrange多项式插值 Lagrange插值多项式: 3.牛顿(Newton)插值公式 //////////////////////////////////// 实验三 高斯消去法解方程组 一、实验目的及要求 1.掌握求解线性方程组的高斯消去法---列选主元在计算机上的算法实现。 2.程序具有一定的通用性,程序运行时先输入一个数n表示方程含有的未知数个数,然后输入每个线性方程的系数和常数,求出线性方程组的解。 二、实验设备和实验环境 安装有C、C++或MATLAB的计算机。 三、算法描述 1.高斯消去法基本思路 设有方程组 ,设 是可逆矩阵。高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵 ,将其中的 变换成一个上三角矩阵,然后求解这个三角形方程组。 2. 利用列选主元高斯消去法求解线性方程组

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陌意随影

您的鼓励是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值