Pandas中的map(), apply()和applymap()的区别

本文介绍了Pandas中map()、apply()和applymap()的区别。map()适用于Series,用于对每个元素应用函数;apply()可以作用于DataFrame的行或列,实现特定计算;applymap()则能作用于DataFrame的每个元素。通过实例展示了它们在数据处理中的具体应用。
摘要由CSDN通过智能技术生成

三者应用对象不同。

1、map()

map() 是一个Series的函数,DataFrame结构中没有map()。map()将一个自定义函数应用于Series结构中的每个元素(elements)。

例子

注:df.dtypes 查询各列数据类型。

结合lambda表达式,用map来对列data1改成保留小数点后三位。data1字段变为字符串类型。

此处用apply也可。

用map把key1的a改成c,b改成d。匹配不到a和c的会转为NaN。

 

2、apply()

apply()将一个函数作用于DataFrame中的每个行或者列。

用apply来对列data1,data2进行相加。

pandasapplymapapplymap都是用于对DataFrame或Series的数据进行函数应用的方法,它们的具体使用方式和作用略有不同。 1. apply方法 apply方法是用于对DataFrame或Series的行或列执行函数操作的方法。可以通过传递axis参数来指定是对行还是列进行操作,默认是对列进行操作。apply方法接受一个函数作为参数,并将该函数应用到DataFrame或Series的每一个元素上,然后将结果组合成一个新的DataFrame或Series。 示例: ``` import pandas as pd data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) def add_one(x): return x + 1 # 对每一列执行add_one函数 df.apply(add_one) # 对每一行执行add_one函数 df.apply(add_one, axis=1) ``` 2. map方法 map方法是用于对Series的每一个元素执行函数操作的方法。它接受一个函数作为参数,并将该函数应用到Series的每一个元素上,然后将结果组合成一个新的Series。 示例: ``` import pandas as pd data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) def add_one(x): return x + 1 # 对Series A 的每一个元素执行add_one函数 df['A'].map(add_one) ``` 3. applymap方法 applymap方法是用于对DataFrame的每一个元素执行函数操作的方法。它接受一个函数作为参数,并将该函数应用到DataFrame的每一个元素上,然后将结果组合成一个新的DataFrame。 示例: ``` import pandas as pd data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]} df = pd.DataFrame(data) def add_one(x): return x + 1 # 对DataFrame的每一个元素执行add_one函数 df.applymap(add_one) ``` 总结: apply方法适用于对DataFrame或Series的行或列执行函数操作;map方法适用于对Series的每一个元素执行函数操作;applymap方法适用于对DataFrame的每一个元素执行函数操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值