QT生成动态库,为什么要同时保留.so的和.so.1的动态库链接

pro文件一般格式为:

QT -= gui
TEMPLATE = lib
DEFINES += DLL_LIBRARY
CONFIG += c++11

一般会生成四个文件:
这4个动态库(.so .so.1 .so.1.0 .so.1.0.0)前三个都是链接连接到.so.1.0.0这个实实在在的库,前三个均为软链接。软链接基本作用就是版本迭代,如果你需要更换版本,只需要把.so的指向改掉就好了,不用改.so的名字

当在pro文件加入 CONFIG += plugin ,则会生成.so一个库。

卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于图像识别计算机视觉任务。它的基本概念包括以下几个方面: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心组成部分,通过使用一系列可学习的滤波器(也称为卷积核)对输入图像进行卷积操作,提取图像的特征。每个滤波器会在输入图像上滑动,并计算出对应位置的卷积结果,生成一个特征图。 2. 池化层(Pooling Layer):池化层用于减小特征图的空间尺寸,同时保留重要的特征信息。常见的池化操作包括最大池化平均池化,它们分别选取局部区域中的最大值或平均值作为池化结果。 3. 激活函数(Activation Function):激活函数引入非线性变换,增加模型的表达能力。在卷积神经网络中,常用的激活函数包括ReLU(Rectified Linear Unit)、SigmoidTanh等。 4. 全连接层(Fully Connected Layer):全连接层将前面的卷积层池化层的输出连接起来,并通过一系列的全连接操作进行分类或回归等任务。 5. 权重共享(Weight Sharing):卷积神经网络中的卷积操作具有权重共享的特性,即在不同位置使用相同的卷积核进行卷积计算。这样可以大大减少需要学习的参数数量,提高模型的效率泛化能力。 6. 多层网络结构:卷积神经网络通常由多个卷积层、池化层全连接层组成,通过堆叠多个层次来提取更高级别的特征表示。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值