学习 ITEM2VEC: NEURAL ITEM EMBEDDING FOR COLLABORATIVE FILTERING

1 学习什么是Word2vec

1)词向量

One-hot Representation

Distributed Representation

http://licstar.net/archives/328

2)logistics回归

https://en.wikipedia.org/wiki/Logistic_function

3)softmax函数

https://en.wikipedia.org/wiki/Softmax_function

4)word2vec

https://iksinc.wordpress.com/tag/skip-gram-model/

1 连续bag-of -words(COBW) :从上下文预测一个字

2 skip-gram:从一个文字预测上下文

Word2vec使用单个隐藏层,完全连接的神经网络如下所示。隐层中的神经元都是线性神经元。输入层被设置为具有与用于训练的词汇表中的单词一样多的神经元。将隐藏层大小设置为所得到的字向量的维度。输出层的大小与输入层相同。因此,假设用于学习字向量的词汇由V字和N构成为词向量的维度,则隐含层连接的输入可以由大小为VxN的矩阵WI表示,每行表示词汇单词。同样,从隐层到输出层的连接可以由大小为NxV的矩阵WO描述。在这种情况下,WO矩阵的每列  表示来自给定词汇表的单词。使用“ 1-of-V ”表示对网络的输入进行编码,这意味着只有一条输入线被设置为1,其余的输入线被设置为零。

截图2015-04-10 at 4.16.00 PM


要更好地处理Word2vec如何工作,请考虑具有以下句子的训练语料库:


“狗看见一只猫”,“狗追猫”,“猫爬树”


语料库词汇有八个字。一旦按字母顺序排列,每个单词都可以由其索引引用。对于这个例子,我们的神经网络将有八个输入神经元和八个输出神经元。让我们假设我们决定在隐藏层中使用三个神经元。这意味着WI和WO分别为8×3和3×8矩阵。在训练开始之前,这些矩阵被初始化为小的随机值,如通常在神经网络训练中。为了说明起见,让我们假设WI和WO被初始化为以下值:


WI = 


屏幕截图2015-04-10 at 8.54.39 PM


W0 =


截图2015-04-10 at 8.54.57 PM


假设我们希望网络学习“猫”和“爬”之间的关系。也就是说,当“猫”输入到网络时,网络应该显示“爬”的可能性很高。在词嵌入术语中,单词“cat”被称为上下文单词,并将单词“climbed”称为目标单词。在这种情况下,输入矢量X将为[0 1 0 0 0 0 0 0] t。请注意,只有向量的第二个分量是1,这是因为输入的单词是“cat”,它在语料库单词的排序列表中保持两个位置。给定目标词“爬”,目标矢量将看起来像[0 0 0 1 0 0 0 0] t。


使用输入向量代表“猫”,隐层神经元的输出可以计算为


H t = X t WI = [-0.490796 -0.229903 0.065460]


不要让我们惊讶的是,隐藏的神经元输出的向量H由于1-out-V表示而模拟WI矩阵的第二行的权重。所以输入到隐层连接的功能基本上是将输入字向量复制到隐层。对隐藏输出层进行类似的操作,输出层神经元的激活向量可以写为


H t WO = [0.100934 -0.309331 -0.122361 -0.151399 0.143463 -0.051262 -0.079686 0.112928]


由于目标是为输出层中的单词产生概率,所以  对于k = 1的Pr(词k |词上下文)V来反映其与输入端的上下文单词的下一个单词关系,我们需要神经元输出的和输出层添加到一个。Word2vec通过使用softmax函数将输出层神经元的激活值转换为概率来实现此目的。因此,通过以下表达式来计算第k个神经元的输出,其中激活(n)表示第n个输出层神经元的激活值: 

截图2015-04-12 at 10.00.48 PM


因此,语料库中八个词的概率是:


0.143073 0.094925 0.114441   0.111166    0.149289 0.122874 0.119431 0.144800


大胆的概率是所选择的目标词“爬”。给定目标向量[0 0 0 1 0 0 0 0] t,可以通过从目标向量中减去概率向量来容易地计算输出层的误差向量。一旦知道了错误,可以使用反向传播更新矩阵WO和WI中
的权重。因此,训练可以通过从语料库呈现不同的上下文目标词对来进行。实质上,这是Word2vec如何学习单词之间的关系,并且在该过程中开发语料库中单词的向量表示。


连续的单词(CBOW)学习


上述描述和架构是为了学习一对单词之间的关系。在连续的单词模型中,上下文由给定目标词的多个单词表示。例如,我们可以使用“cat”和“tree”作为“爬”的上下文单词作为目标单词。这需要修改神经网络架构。如下所示的修改包括将隐藏层连接的输入C次复制到上下文单词的数量,以及在隐藏层神经元中添加除以C操作。


截图2015-04-12在10.58.21 PM


通过上述配置来指定C上下文单词,使用1进制V表示来编码的每个单词意味着隐含层输出是对应于输入处的上下文单词的单词向量的平均值。输出层保持不变,训练以上述方式进行。


Skip-Gram模型


Skip-gram模型反转了目标和上下文单词的使用。在这种情况下,目标字在输入端被馈送,隐层保持相同,并且神经网络的输出层被多次复制以适应所选数量的上下文单词。以“猫”和“树”为例作为上下文单词,以“爬”为目标字,舍略模型中的输入向量为[0 0 0 1 0 0 0 0] t,而两个输出层将分别具有[0 1 0 0 0 0 0 0] t和[0 0 0 0 0 0 0 1] t作为目标向量。代替产生一个概率向量,将为当前示例生成两个这样的向量。按照上述方式产生每个输出层的误差向量。然而,将所有输出层的误差向量相加,以通过反向传播来调整权重。这确保了通过训练,每个输出层的重量矩阵WO都保持相同。


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值