公众号 系统之神与我同在
知识图谱 in 4Paradigm
标准化知识图谱构建
风险传导分析案例
认知智能是人工智能发展的高阶形态
知识图谱:AI的大脑
·一种大规模语义网络
·一种结构化语义知识库
·通过不同知识的关联性形成的网状知识结构
·结点代表实体(entity)或者概念(concept)
·边代表实体/概念之间的各种语义关系
·基本组成单位是“实体-关系-实体”或“实体-属性-属性值”三元组
知识图谱视角及用途
知识图谱核心技术
第四范式产品能力 – 标准化构建知识图谱
极致简化,将业务问题转化为知识图谱问题
第四范式知识图谱有什么不同:内置“NLP专家”
传统产品 - NLP专家深度参与
·人员门槛高:需要NLP专家的参与
·工作任务重:要根据数据集情况定制训练方案
·反应速度慢:人工分析调度训练、预测周期长
智能型产品 -业务人员简单操作
·人员门槛低:无需NLP经验,业务人员简单培训即可
·工作任务轻:上传数据后系统自动以合理的方案进行训练、预测、 入图
·反应速度快:根据数据集实时情况,自适应生成方案,时效性强
第四范式知识图谱有什么不同:新一代智能文本标注
核心企业风险传导分析·舆情图谱知识类型定义
核心企业风险传导分析·多元舆情数据的智能化整合
核心企业风险传导分析·基于图谱风控建模的优势
核心企业风险传导分析·知识抽取到图谱构建
核心企业风险传导分析·基于规则的图计算,找出异常值
核心企业风险传导分析·验证场景风险度量
·风险影响时段:事件发⽣前3天到后11天
·风险影响目标:风险事件对核⼼企业在⼆级资本市场影响权重
·风险度量标准:采用15天内核⼼企业股价变化与同期上证指数变化的差值作为预期输出值
核心企业风险传导分析·风险事件传导过程
核心企业风险传导分析·建模逻辑
学习风险对核心企业的影响
·风险事件特征:风险事件本身及其关联属性形 成的特征
·传导链路特征:风险事件到目标节点之间的关 联路径信息形成的特征
·组合特征:已有特征组合,扩展形成高维特征
核心企业风险传导分析·模型算法及预估效果
核心企业风险传导分析·特征工程及梯度优化
自动知识表示学习
·自动负采样算法
·自动模型设计
知识表示(KG embedding)
将图谱中结点和关系,映射到低维向量空间,同时保留图谱中的重要性质、特征。
优势:
·更好地与机器学习算法结合
·更高效地查询
·发现隐藏性质
·预测未知的边
知识表示学习
训练目标: 尽可能保留原图中的连接性质。
相关研究工作
利用AutoML对不同应用场景建模
负采样(negative sampling)
关键点
挑战:
1.负样本数量众多.
2.负样本质量难以度量.
3.负样本分布是动态的.
解决方案:
1.采用cache保证效率和动态.
2.通过分数/梯度度量负样本质量.
3.利用AutoML调整分布.
4.常用负采样算法
AutoML搜索分布
实验——有效性和效率
普适性负采样算法
打分函数(scoring function)设计
关系路径(relational path)建模
关键点
挑战:
·由于不同图谱模式不同,现有模型在不同任务中没有绝对胜者.
·三元组中的语义信息,和元组间的结构信息错综复杂.
解决方案:
·定义统一的模型搜索空间.
·利用搜索技术,自适应设计不同模型.
双线性模型的统一表达
关系路径模型的统一表达
搜索框架
实验有效性