不知不觉中,我在知乎专栏揭开知识库问答KB-QA的面纱已经发表了10篇文章,期间收到了很多朋友的私信和企业的邀请,在这里先感谢各位的支持。
由于专栏已经有10篇文章,且每篇的内容相对较多,导致新关注专栏的朋友一时不知道从哪里看起。因此,我将这篇文章作为整个专栏的一个导读,对整个专栏进行介绍和总结,希望能够给大家带来一些帮助。
- 对于刚接触知识库问答KB-QA这个领域的朋友,建议先阅读揭开知识库问答KB-QA的面纱1·简介篇,这篇文章介绍了KB-QA的相关重要概念:知识库(知识库构成、知识库类型、知识库的一些关键技术)、知识库问答(应用场景、评价标准、和对话系统的差别)、知识库问答的主流方法(语义解析、信息抽取、向量建模、深度学习、前沿方法)、KB-QA的数据集。
接下来,针对知识库问答的主流方法,我们挑选了一些经典论文作为例子,为大家进行了讲解:
- 揭开知识库问答KB-QA的面纱2·语义解析篇介绍了传统的KB-QA语义解析方法、语义解析、逻辑形式等相关概念,该类方法思想在于将人类使用的自然语言句子转化为机器可以理解的逻辑形式,通过数据库查询得出答案,该方法涉及到一些传统的NLP方法和语言学,对于初学者可能具有一定困难。
- 揭开知识库问答KB-QA的面纱3·信息抽取篇 - 知乎专栏介绍了传统的KB-QA信息抽取方法,思想在于通过抽取句子中的特征信息和知识库中相关实体的特征信息,用以上特征训练分类器对候选答案排序得出答案,该方法易于理解,贴近人类的思想,涉及到传统NLP方法和一些特征工程,比较适合工业界使用。
- 揭开知识库问答KB-QA的面纱4·向量建模篇 - 知乎专栏介绍了传统的KB-QA向量建模方法,思想在于将知识库的实体和自然语言句子都映射到同一个向量空间中,通过比较相似度寻找答案,该方法是一种数据驱动的方法,不需要太多的预处理,非常易于实现,适合刚接触该领域想要进行实践的朋友。
- 揭开知识库问答KB-QA的面纱5·深度学习上篇 - 知乎专栏介绍了深度学习对向量建模方法的扩展,使用卷积神经网络提升性能,该方法开始涉及到现在很流行的深度学习知识,其思想和向量建模篇很相近,建议两篇一起阅读。
- 揭开知识库问答KB-QA的面纱6·深度学习中篇 - 知乎专栏介绍了深度学习对语义解析方法的扩展,使用卷积神经网络提升性能,该方法是目前KB-QA中state-of-the-art的一个方法,建议对学术研究感兴趣的朋友阅读。
- 揭开知识库问答KB-QA的面纱7·深度学习下篇(一) - 知乎专栏介绍了现在深度学习很火热的记忆网络、以及如何使用记忆网络进行KB-QA,是一篇值得做NLP方向的朋友阅读的文章。
- 揭开知识库问答KB-QA的面纱7·深度学习下篇(二) - 知乎专栏介绍了现在深度学习很火的注意力机制如何应用在KB-QA上,也是一篇值得做NLP方向的朋友阅读的文章,建议和深度学习上篇一起阅读。
- 揭开知识库问答KB-QA的面纱8·非结构化知识篇 - 知乎专栏介绍了一种全新的思路进行KB-QA,如何使用维基百科等非结构化知识代替传统结构化的知识库进行问答,该方法既适合工业界,又给学术界带了很大的研究价值,核心技术涉及到NLP机器阅读理解任务。
- 【AI前沿】机器阅读理解与问答·介绍篇 - 知乎专栏该篇承接非结构化知识篇,针对NLP机器阅读理解这一任务进行了介绍,包括阅读理解任务、数据集、评价标准、baseline和相关比赛,机器阅读理解是NLP领域非常火热的研究话题,里面涉及到了很多最新的NLP技术,我们将对该任务进行多篇文章的介绍,非常适合NLP方向的朋友阅读,我们希望通过对该任务的介绍也能给KB-QA带来更多的灵感。
- 揭开知识库问答KB-QA的面纱9·动态模型篇 - 知乎专栏 该篇介绍了一种全新的思路进行KB-QA,该方法也可以拓展到VQA上。思想在于预先定义一些网络模块,通过对问题进行解析,针对问题使用不同的模块组合出动态模型进行问答,该方法具有较大的研究价值,是一种很前沿的方法,希望能够给大家带来一些灵感。
最后,我们在这里提供一些干货:
- 对于知识库的存储,常见采用的是Virtuoso SPARQL engine,配合lambda-DCS进行查询。
- 知识库存储也可采用jena+sparql框架实现,环境搭建https://jena.apache.org/download/,相关deomo: https://github.com/ayoungprogrammer/nlquery (该条信息由知乎用户PonLee - 知乎提供,感谢:-D)
- 公开数据集的下载地址,方便想要复现的朋友们使用:
WebQuestion: https://github.com/percyliang/sempre
Freebase: https://github.com/percyliang/sempre (or https://developers.google.com/freebase/) Wikianswers: http://knowitall.cs.washington.edu/paralex/
所有方法讲解都附上了相关文章的链接,想要复现的朋友可直接与作者email获取数据或源码。
有相关合作意向的朋友欢迎与我联系。
作者主页:
https://dayihengliu.github.io/dayihengliu.github.io/
有任何疑问欢迎知乎私信与我探讨交流。
本专栏已授权在微信公众号ChatbotMagazine上转载,感兴趣的朋友可以扫描下方微信号关注: