FAT:一种快速的Triplet Loss近似方法,学习更鲁棒的特征表示,并进行有噪声标签的提纯...

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


导读

Triplet的两大问题,计算复杂度和噪声敏感,看看这篇文章如何用一种对Triple的近似的方法来解决这两大问题。


摘要

三元组损失是ReID中非常常用的损失, 三元组损失的主要问题在于其计算上非常贵,在大数据集上的训练会受到计算资源的限制。而且数据集中的噪声和离群点会对模型造成比较危险的影响。这篇文章要解决的就是这两个问题,提出了一种新的三元组损失,叫做fast-approximated triplet(FAT)损失,下面来看下这个损失具体是什么样的。

1. 介绍

上面说过,三元组损失的一个问题是计算量的问题,三元组的组合数量和样本数量是3次方的关系,这个数字是非常庞大的。而且,大量的三元组实际上是不重要的,也就是简单样本,对模型的优化其实是没什么用的。如果是随机采样的话,确实可以加速训练,但是容易不收敛,所以现在都会使用各种困难样本挖掘的方法。不过,这些困难样本挖掘的方法会产生采样的偏差,对于离群点会很脆弱。

本文的贡献:

  • 提出了FAT loss,提升了标准的triplet loss的效率。

  • 首次证明了处理了标注噪声可以进一步提升ReID的性能。通过分配soft label可以学到更鲁棒的特征。

  • 在三个数据集上证明了该方法的有效性。

2. 方法

2.1 Fast Approximated Triplet (FAT) Loss

FAT loss的推导如下:

我们首先有下面的三角不等式:

这个式子里,ca和cn是聚类中心。d是距离函数。

对于离群点,上界包含两项,p2s(点到集合)的距离,这个依赖于anchor点,再加上簇的内聚性的惩罚项,定义为最大簇的“半径”。我们最小化这个上界,就得到了FAT loss:

这个损失和完整的triplet loss的性能相当,当时效率高了很多。很明显可以看到,FAT loss的计算量对于数据集的大小是线性复杂度。

归一化的FAT Loss

做为一个margin loss,对于输入尺度是很敏感的。所以,往往会对输入特征进行归一化。这样就得到归一化的FAT loss:

这里,R‘类似于归一化的样本集的半径。实际上,我们发现,加上一个交叉熵loss会对训练更加稳定,这样就得到了混合loss:

簇中心的选择

FAT的簇中心的选择也是很有讲究的,有四个选择:1)簇特征的平均值,2)归一化的簇特征的平均值,3)簇特征的平均值的归一化,4)归一化的簇特征的平均值的归一化。具体如下:

可视化图:

实验表明,第4中方式,归一化的簇特征的平均值的归一化表现的最好。

2.1 噪声标签的蒸馏

ReID中的标签噪声主要3种类型:1)图像被分配到了错误的id类别中,2)图像不属于任何一种id类别,3)同一张图像同时存在多个标签。三元组损失对这些标签噪声是很敏感的。由于FAT loss用的是聚类中心,所以对于噪声点影响不会那么明显。我们以此提出了一种标签蒸馏的teacher-student模型。方法如下:

1、首先,用交叉熵,用分类的方式训练5个epochs,这里包括有噪声的数据。采用这种方式训练的网络对于简单的样本具有较高的置信度。

2、重新训练5个epochs,这次只使用那些置信度高的样本。

3、不断的重复上面的过程。

教师模型训练完了之后,使用教师模型的预测作为soft label来代替之前的hard label,然后使用FAT loss来训练学生模型。只有那些置信度高的样本才会参与计算聚类中心,如果使用了混合损失,soft label也会用作交叉熵的target。

3. 实验结果

FAT loss在几个数据集上的效果:

教师-学生网络的各自的效果:

论文链接:https://arxiv.org/pdf/1912.07863

代码链接:https://github.com/VITA-Group/FAT

或者在公众号后台回复:“FAT”,可下载打包好的论文和代码。

—END—

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值