【AI入门】CherryStudio入门5:创建知识库,对接Obsidian 笔记

 前言

来吧,继续CherryStudio的实践,前边给Cherry Studio添加知识库,对接思源笔记,但美中不足,思源笔记得导出再导入知识库,本文看一下obsidian笔记,笔记内容直接被知识库使用,免去导出导入的环节😄😄😄

准备 

CherryStudio安装配置,请参考前期文档:

【AI入门】Cherry入门1:Cherry Studio的安装及配置-CSDN博客

 选看内容:

【AI入门】CherryStudio入门2:配置及使用 MCP-CSDN博客

【AI入门】CherryStudio入门3:结合FastMCP创建自己的MCP服务,实现哔哩视频查询-CSDN博客

【AI入门】CherryStudio入门4:创建知识库,对接思源笔记-CSDN博客

  设置Cherry Studio知识库

模型准备,知识库需要嵌入模型,及重排模型,我们现在模型服务中添加上,后面备用:

需要硅基流动免费tocken的,可以参考我之前的文档:【AI入门】硅基流动:获得DeepSeek免费token(含其他大模型)-CSDN博客

然后创建知识库:

 然后添加知识目录,把Obsidian的文件目录(后面介绍步骤),添加过来,等大模型解析完(图标变绿)就可以用了:

 使用测试

测试结果,很神奇,不同大模型对知识库的态度不一样:

大模型一:

qwen3,貌似完全没理知识库,看这回答就知道:

大模型二: 

 DeepSeek R1貌似也是:

  小模型 :ok

大模型三:ok

 说实在的:没有发现其中的奥秘😕。

 定制助手

根据上面测试的情况,不同模型对知识库支持情况不同,可以设置一个专门的助手,固定大模型和关联的知识库,用于进行本地知识的查询。具体设置如下。

创建一个助手:

 创建助手后,选择助手,进入其设置界面:

设置提示词,确保对知识库的搜索:

选择大模型,查找本地知识库,就不用庞大的模型了,模型温度调到最小,不需要大模型发挥想象力,推理能力,据实回答就好:

然后,绑定知识库,不用每次都选:

然后,就可以用这个助手来回到本地知识相关问题了。

Obsidian设置

安装

官网地址:https://obsidian.md/download

设置

安装过程简单,完成进入如下界面:

创建文件

创建文件夹和文件,后面测试用:

查看笔记的物理地址:

 加入知识库

Obsidian的笔记都是以md文件存储在本地,笔记中的文件夹和物理磁盘上的文件夹是对应的,把Obsidian对应的物理目录添加到Cherry Studio的知识库文件夹中,如同即可:

 然后使用测试:

知识库刷新

如果Obsidian的笔记内容更改了,需要刷新知识库才行,我的测试记录如下:

我这里增加了新内容:

 Cherrystudio是查询不到的:

需要刷新知识库:

然后,可以测试

Obsidian学习资源推荐

Obsidian还有很多功能,可以参考下面文档学习。

结尾

Obsidian单就和CherryStudio的知识库进行直接衔接,这一点来说,还是很nice的,如果内容变更,不需要刷新就更棒了,以后总会有办法的吧,期待明天更美好😁😁😁

当然可以,这里是一个简化的例子,我们将使用Python的`sklearn`库,结合`matplotlib`进行数据可视化,`scikit-learn.metrics`库来生成混淆矩阵ROC曲线以及AUC值。假设我们已经有了一个预训练的分类模型(例如SVM或者随机森林)和测试数据: ```python # 导入必要的库 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.metrics import confusion_matrix, roc_curve, auc # 加载鸢尾花数据集 iris = datasets.load_iris() X = iris.data y = iris.target # 数据分割和预处理 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) # 训练模型 model = SVC(probability=True) model.fit(X_train, y_train) # 预测并计算混淆矩阵 y_pred = model.predict(X_test) conf_mat = confusion_matrix(y_test, y_pred) print("Confusion Matrix:\n", conf_mat) # ROC曲线和AUC y_scores = model.predict_proba(X_test)[:, 1] # 获取正类的概率预测 fpr, tpr, _ = roc_curve(y_test, y_scores) roc_auc = auc(fpr, tpr) plt.figure() plt.plot(fpr, tpr, label=f"ROC curve (area = {roc_auc:.2f})") plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC)') plt.legend(loc="lower right") plt.show() ``` 在这个例子中,我们首先创建了一个SVM分类器,并用训练数据拟合它。然后,对测试数据进行预测,得到分类结果和对应的概率得分。接着,利用这些得分计算混淆矩阵、绘制ROC曲线,并计算其面积(AUC)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

正经教主

有钱捧个钱场,没钱捧个人场👌

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值