机器学习
文章平均质量分 70
编号1993
这个作者很懒,什么都没留下…
展开
-
机器学习概念
机器学习概念:简单地说,机器学习就是把无序的数据转换成有用的信息监督学习(suervised learning):一般使用两种类型的目标变量:标称型和数值型标称型:目标变量的结果只在有限目标集中取值数值型:目标变量可以从无限的数值集合中取值机器学习首先需要做的就是算法训练,即学习如何分类。通常为算法输入大量已分类数据作为算法的训练集。训练集:用于训练机器原创 2015-08-27 13:35:56 · 1568 阅读 · 0 评论 -
Neural Networks Part 1:Setting up the Architecture
原文地址:http://cs231n.github.io/neural-networks-1/####################################内容列表:1.快速介绍(Quick intro without brain analogies)2.一个神经元模型(modeling one neuron)2.1 . 生理动机和连接(biologi翻译 2016-05-07 16:31:47 · 1544 阅读 · 0 评论 -
Backpropagation, Intuitions
原文地址:http://cs231n.github.io/optimization-2/################################################################内容列表:1.介绍2.简单表达式,解释梯度3.复合表达式,链式法则,反向传播4.反向传播的直观理解5.模块化:Sigmoid案例6.实际翻译 2016-05-06 13:46:03 · 1799 阅读 · 0 评论 -
Optimization:Stochastic Gradient Descent
原文地址:http://cs231n.github.io/optimization-1/########################################################################3内容列表:1.介绍2.可视化损失函数3.最优化3.1.策略1:随机搜索3.2.策略2:随机局部搜索3.3.策略3:跟随翻译 2016-05-05 16:44:14 · 5720 阅读 · 0 评论 -
Linear Classification: Support Vector Machine, Softmax
原文地址:http://cs231n.github.io/linear-classify/##############################内容列表:1.介绍线性分类器2.线性成绩函数3.解释一个线性分类器4.损失函数4.1.多类支持向量机4.2 . Softmax分类器4.3 . 支持向量机 vs Softmax5.线性分类器的交翻译 2016-05-04 15:30:36 · 3227 阅读 · 0 评论 -
Image Classification: Data-driven Approach, k-Nearest Neighbor, train/val/test splits
原文地址:http://cs231n.github.io/classification/############################################################################33这是一篇入门级的文章,为了向计算机视觉专业外的学生介绍图像识别问题以及数据驱动方法。内容如下:1.图像分类,数据驱动方法,算法流翻译 2016-04-29 23:36:50 · 5621 阅读 · 0 评论 -
PCA数学原理
转载自:http://www.360doc.com/content/13/1124/02/9482_331688889.shtml##############################################################PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变转载 2016-03-13 19:34:03 · 2240 阅读 · 0 评论 -
LDA 两类Fisher线性判别分析及python实现
参考:《模式识别》(第三版)第4.3章-Fisher线性判别分析机器学习中的数学(4)-线性判别分析(LDA),主成分分析(PCA):http://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html线性判别分析LDA:http://www.cnblogs.com/zhangchao原创 2016-03-19 23:23:27 · 20283 阅读 · 14 评论 -
线性分类器-基本概念
转载自:《模式识别》(第三版)第4章-线性分类器#############################################################4.1引言模式识别的目的:在特征空间中设法找到两类(或多类)之间的分界面基于类别直接设计分类器需要确定三个基本要素:一是分类器即判别函数的类型,也就是从什么样的判别函数(函数集)中去转载 2016-03-19 15:08:08 · 9034 阅读 · 0 评论 -
EigenFace的使用 python
参考:人脸识别之特征脸方法(Eigenface):http://blog.csdn.net/zouxy09/article/details/45276053Eigenface算法,PCA数学理论,协方差:http://blog.csdn.net/gdut2015go/article/details/46271523人脸识别算法-特征脸方法(Eigenface)及python实现:htt原创 2016-03-15 20:15:27 · 6031 阅读 · 3 评论 -
机器学习 标称型和数值型概念
参考:《Machine Learning in Action》第一部分 分类##############################################################在监督学习(supervised learning)的过程中,只需要给定输入样本集,机器就可以从中推演出指定目标变量的可能结果。监督学习相对比较简单,机器只需从输入数据中预原创 2015-10-15 13:34:32 · 24419 阅读 · 1 评论 -
机器学习 & python 使用k-近邻算法改进约会网站的配对效果
参考自:《Machine Learning In Action》第二章######################################################################程序流程:1.收集数据:提供文本文件2.准备数据:使用Python解析文本文件3.分析数据:使用Matplotlib画二维扩散图4.测试算法:使用提供原创 2015-10-18 14:52:00 · 2401 阅读 · 0 评论 -
机器学习 & python k-近邻算法处理手写识别系统
参考自:《Machine Learning In Action》第二章##########################################################识别数字0-9。需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32x32像素的黑白图像程序所需文件:http://download.csdn.net/de原创 2015-10-18 18:22:50 · 1382 阅读 · 0 评论 -
机器学习 & python k-近邻算法
参考自:《Machine Learning In Action》第二章####################################################33k-近邻算法概述:简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类:优点:精度高,对异常值不敏感,无数据输入假定缺点:计算复杂度高,空间复杂度高适用数据范围:数原创 2015-10-16 11:29:11 · 1231 阅读 · 0 评论 -
Rapid Object Detection using a Boosted Cascade of Simple Features
转载自:Viola–Jones object detection framework–Rapid Object Detection using a Boosted Cascade of Simple Features中文翻译 及 matlab实现(见文末链接)ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001...转载 2018-10-28 13:39:25 · 3557 阅读 · 0 评论