LightOJ - 1292
刚开始写的时候是O(
n3log(n)
)的,枚举两个点,得到一条直线,用set记录下来,然后再 O(
n
)地计数,居然没有卡过 orz
听了学长的教导,get到一个几何常用思路,正确解法如下
枚举一个点,再枚举其他点,计算到这个点的斜率,make_pair(dx,dy)塞到map里,把相同斜率的计数一下
这样时间复杂度为 O(
#if _WIN32||_WIN64
#define lld I64d
#define llu I64u
#endif
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
using namespace std;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define LL long long
#define ULL unsigned long long
int maxx(int a,int b){return a>b?a:b;}
int minn(int a,int b){return a<b?a:b;}
int abss(int a){return a<0?(-a):a;}
int GCD(int a,int b){return b?GCD(b,a%b):a;}
int N;
int inpt[710][2];
map <pair<int,int>,int> Map;
int main()
{
int T;
scanf("%d", &T);
for(int ck=1; ck<=T; ck++)
{
scanf("%d", &N);
for(int i=1; i<=N; i++)
{
scanf("%d%d", &inpt[i][0], &inpt[i][1]);
}
int ans=0;
for(int i=1; i<=N; i++)
{
Map.clear();
for(int j=1; j<=N; j++)
{
if(i==j) continue;
int dx=inpt[i][0]-inpt[j][0],dy=inpt[i][1]-inpt[j][1];
if(dx<0) {dx=-dx;dy=-dy;}
int G=GCD(dx,dy);
dx/=G;dy/=G;
Map[make_pair(dx,dy)]++;
ans=maxx(Map[make_pair(dx,dy)],ans);
}
}
printf("Case %d: %d\n", ck, ans+1);
}
return 0;
}