实战项目与性能优化之实时推荐系统_Spark Streaming 处理用户行为数据 → HBase 存储特征 → Spark MLlib 训练模型

项目架构与数据流

技术栈选择

  • 实时处理:Spark Structured Streaming(低延迟、Exactly-Once语义)

  • 特征存储:HBase(支持快速随机读写、存储用户/物品实时特征)

  • 模型训练:Spark MLlib(分布式机器学习,适合周期性训练)

  • 消息队列:Kafka(作为行为数据管道,解耦系统)

  • 服务层:可选 Spring Boot/Flink(提供推荐接口)

数据流水线

text

User Behavior Data (Clicks, Views, Purchases)
        |
        ↓ (HTTP/ SDK)
    Apache Kafka (Topic: user-behaviors)
        |
        ↓ (Spark Streaming)
    Spark Structured Streaming
        | (Feature Engineering)
        |----------------→ HBase (User/Item Features)
        ↓
    Spark MLlib (Periodic Training)
        |
        ↓ (Model Storage)
    HDFS (Trained Model)
        |
        ↓ (Load Model)
    Real-Time Recommendation Service
        |
        ↓ (HTTP API)
    Client App

阶段一:实时特征工程与存储 (Spark Streaming → HBase)

1. 用户行为数据 Schema

假设 Kafka 中的用户行为消息为 JSON 格式:

json

{
  "user_id": "u123",
  "item_id": "i456",
  "behavior_type": "click", // click, view, purchase, cart
  "timestamp": 1715328000000,
  "duration": 15.2,         // 浏览时长(秒)
  "category": "electronics"
}
2. Spark Structured Streaming 处理逻辑

Scala 代码示例 (RealTimeFeatureEngineering.scala)

scala

import org.apache.spark.sql.{SparkSession, DataFrame}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.ml.linalg.Vectors

object RealTimeFeatureEngineering {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .appName("Real-Time Feature Engineering")
      .config("spark.sql.adaptive.enabled", "true")
      .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
      .getOrCreate()

    import spark.implicits._

    // 1. 从Kafka读取用户行为数据
    val behaviorDF = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "kafka-broker:9092")
      .option("subscribe", "user-behaviors")
      .option("startingOffsets", "latest")
      .load()
      .selectExpr("CAST(value AS STRING) as json_value")

    // 2. 解析JSON数据
    val behaviorSchema = StructType(Seq(
      StructField("use
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿南0125

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值