计算以10为底整数N的对数 l o g 10 N log_{10}N log10N 普通方法
用于计算以10为底整数N的对数 l o g 10 N log_{10}N log10N。例如 l o g 10 100 = 2 log_{10}100=2 log10100=2, l o g 10 1000 = 3 log_{10}1000=3 log101000=3。
算法说明
以10为底整数N的整数对数 l o g 10 N log_{10}N log10N,当 N 为 32 位非零整数时,整数对数 l o g 10 N log_{10}N log10N的值一共只有 0 - 9 这10种情况,所以这个普通方法就是通过判断整数N的值的大小来获取对数 l o g 10 N log_{10}N log10N的值,从 1 0 9 10^9 109 到 1 0 1 10^1 101 逐个进行比较。例如当N大于等于1000000000时, l o g 10 N log_{10}N log10N的值就为9;当N小于1000000000但大于等于100000000, l o g 10 N log_{10}N log10N的值就为8。
该算法就是使用这种浅显易懂的方式来计算 l o g 10 N log_{10}N log10N的值。
实现代码
实现方式为:
unsigned int bit_log10(unsigned int val)
{
int ret;
ret = (val >= 1000000000) ? 9 : (val >= 100000000) ? 8 : (val >= 10000000) ? 7 :
(val >= 1000000) ? 6 : (val >= 100000) ? 5 : (val >= 10000) ? 4 :
(val >= 1000) ? 3 : (val >= 100) ? 2 : (val >= 10) ? 1 : 0;
return ret;
}
注意,如果传入的参数val
不是10的次幂,则返回值是val
的值向下舍入到最近的10的次幂的对数值。例如 val
的值为128,则返回值为
l
o
g
10
128
=
2
log_{10}128=2
log10128=2。
测试程序:
int main(int argc, char* argv[])
{
printf("%d\n", bit_log10(10));
printf("%d\n", bit_log10(100));
printf("%d\n", bit_log10(1000));
printf("%d\n", bit_log10(10000));
printf("%d\n", bit_log10(128));
return 0;
}
运行结果如下:
1
2
3
4
2
该算法的计算方式虽然看起来简单粗暴,但是当输入值 N 均匀分布在32位时,这种方法效果就会特别好,因为76%的输入会在第一次比较时得到对数 l o g 10 N log_{10}N log10N的值,21%的输入会在第二次比较时得到对数 l o g 10 N log_{10}N log10N的值,2%在第三次比较时得到对数 l o g 10 N log_{10}N log10N的值,以此类推,每次比较将剩余部分减少90%。因此,平均只需要不到2.6次操作就能得到对数值。但当输入值的分布不均匀时,尤其时数值普遍较小时,效率就会变得比较低。
算法来源
算法计算过程
从 1 0 9 10^9 109 到 1 0 1 10^1 101 逐个进行比较。
计算示例
例如:
val = 1000000 = 1 0 6 10^6 106,所以 l o g 10 1000000 = 6 log_{10}1000000=6 log101000000=6。
模拟这个比较计算的过程:
val >= 1000000000 ? 9 :
不符合
val >= 100000000 ? 8 :
不符合
val >= 10000000 ? 7 :
不符合
val >= 1000000 ? 6 :
符合
ret = 6
结束比较,得到答案6。
[参考资料]
Bit Twiddling Hacks By Sean Eron Anderson
本文链接:https://blog.csdn.net/u012028275/article/details/127147665