【位操作笔记】计算以2为底整数N的对数 普通方法

计算以2为底整数N的对数 l o g 2 N log_2N log2N 普通方法

用于计算以2为底整数N的对数 l o g 2 N log_2N log2N。例如 l o g 2 8 = 3 log_28=3 log28=3 l o g 2 16 = 4 log_216=4 log216=4

算法说明

以2为底整数N的对数 l o g 2 N log_2N log2N,与最高有效位(most significant bit set,MSB)的位置相同。

例如8 = 0x8 = 0b1000,最高有效位在第3位,与 l o g 2 8 = 3 log_28=3 log28=3值相等。

该算法就是使用该特性来计算 l o g 2 N log_2N log2N的值。

实现代码

实现方式为:

unsigned int bit_log2(unsigned int val)
{
    unsigned int ret = 0;
    
    while (val >>= 1)
        ret++;
    
    return ret;
}

注意,如果传入的参数val不是2的次幂,则返回值是val的值向下舍入到最近的2的次幂的对数值。例如 val的值为10,则返回值为 l o g 2 8 = 3 log_28=3 log28=3

测试程序:

int main(int argc, char* argv[])
{
    printf("%d\n",  bit_log2(32));
    printf("%d\n", bit_log2(16));
    printf("%d\n", bit_log2(8));
    printf("%d\n", bit_log2(10));
    printf("%d\n", bit_log2(20));
    
    return 0;
}

运行结果如下:

5
4
3
3
4

算法计算过程

因为 l o g 2 N log_2N log2N与最高有效位(most significant bit set,MSB)的位置相同,所以这里是用最普通的方法,循环右移计算最高有效位在第几位。

计算示例

例如:

val = 16 = 0x10 = 0b10000,最高有效位在第4位,所以 l o g 2 16 = 4 log_216=4 log216=4

模拟这个循环计算的过程:

0x10000 >>= 1	=>	val = 0x1000

ret++	=>	ret = 1

0x1000 >>= 1	=>	val = 0x100

ret++	=>	ret = 2

0x100 >>= 1	=>	val = 0x100

ret++	=>	ret = 3

0x10 >>= 1	=>	val = 0x1

ret++	=>	ret = 4

0x1 >>= 1	=>	val = 0x0

结束循环,得到答案4。


[参考资料]

Bit Twiddling Hacks By Sean Eron Anderson


本文链接:https://blog.csdn.net/u012028275/article/details/126440588

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值