计算以2为底整数N的对数 l o g 2 N log_2N log2N 普通方法
用于计算以2为底整数N的对数 l o g 2 N log_2N log2N。例如 l o g 2 8 = 3 log_28=3 log28=3, l o g 2 16 = 4 log_216=4 log216=4。
算法说明
以2为底整数N的对数 l o g 2 N log_2N log2N,与最高有效位(most significant bit set,MSB)的位置相同。
例如8 = 0x8 = 0b1000,最高有效位在第3位,与 l o g 2 8 = 3 log_28=3 log28=3值相等。
该算法就是使用该特性来计算 l o g 2 N log_2N log2N的值。
实现代码
实现方式为:
unsigned int bit_log2(unsigned int val)
{
unsigned int ret = 0;
while (val >>= 1)
ret++;
return ret;
}
注意,如果传入的参数val
不是2的次幂,则返回值是val
的值向下舍入到最近的2的次幂的对数值。例如 val
的值为10,则返回值为
l
o
g
2
8
=
3
log_28=3
log28=3。
测试程序:
int main(int argc, char* argv[])
{
printf("%d\n", bit_log2(32));
printf("%d\n", bit_log2(16));
printf("%d\n", bit_log2(8));
printf("%d\n", bit_log2(10));
printf("%d\n", bit_log2(20));
return 0;
}
运行结果如下:
5
4
3
3
4
算法计算过程
因为 l o g 2 N log_2N log2N与最高有效位(most significant bit set,MSB)的位置相同,所以这里是用最普通的方法,循环右移计算最高有效位在第几位。
计算示例
例如:
val = 16 = 0x10 = 0b10000,最高有效位在第4位,所以 l o g 2 16 = 4 log_216=4 log216=4。
模拟这个循环计算的过程:
0x10000 >>= 1 => val = 0x1000
ret++ => ret = 1
0x1000 >>= 1 => val = 0x100
ret++ => ret = 2
0x100 >>= 1 => val = 0x100
ret++ => ret = 3
0x10 >>= 1 => val = 0x1
ret++ => ret = 4
0x1 >>= 1 => val = 0x0
结束循环,得到答案4。
[参考资料]
Bit Twiddling Hacks By Sean Eron Anderson
本文链接:https://blog.csdn.net/u012028275/article/details/126440588