sklearn的LabelEncoder 遇到新值的解决办法

问题:sklearn的LabelEncoder函数遇到新值报错

sklearn的LabelEncoder函数,在fit结束后,对dataframe数据进行transform的时候,如果遇到了没在fit时编码规则里的新值,会出现代码报错,不同于spark的LabelEncoder碰到新值会给你编成len+1。

解决办法:基于编码规则的修改

1、保存编码字典

from sklearn.preprocessing import LabelEncoder

le = preprocessing.LabelEncoder()
le.fit(X)

# label编码其实就是映射的字典,将编码字典保存
le_dict = dict(zip(le.classes_, le.transform(le.classes_)))

2、数据判断

检索单个新项目的标签,如果项目丢失,则将值设置为未知

le_dict.get(new_item, 'Unknown')

3、批量检索 Dataframe 列的标签

df['col'] = df['col'].apply(lambda x: le_dict.get(x, 'Unknown'))

# 再将新值删除
df = df[df['col'] != 'Unknown']
df['col'] = df['col'].astype(dtype='int64')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值