自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(32)
  • 收藏
  • 关注

原创 Sklearn学习笔记7 Preprocessing

文章目录

2021-05-28 09:28:31 535

原创 keras学习笔记

keras学习笔记通道的顺序通道的顺序keras默认通道在前(channel-first),而tensorflow默认通道在后(channel-last)mnist数字手写体数据集中,keras的shape为channel-first: 60000,1,28,28tensorflow的shape为channel-last: 60000,28,28,1...

2021-02-26 21:06:21 277

原创 Sklearn学习笔记8 杂记

1 Sklearn包中StratifiedKFold和KFold生成交叉验证数据集的区别:1.1 KFold交叉采样将训练/测试数据集划分n_splits个互斥子集,每次只用其中一个子集当做测试集,剩下的(n_splits-1)作为训练集,进行n_splits次实验并得到n_splits个结果。注:对于不能均等分的数据集,前n_samples%n_spllits子集拥有n_samples//n_spllits+1个样本,其余子集都只有n_samples//n_spllits个样本。(例10行数据分3份

2020-11-07 13:08:09 276

原创 PyTorch中nn.xx与nn.functional.xx的区别

PyTorch中nn.xx与nn.functional.xx的区别1 总体2 两者的相同之处:2.1 功能相同:2.2 运行效率也是近乎相同。3 两者的差别之处:3.1 调用方式不一样3.2 与nn.Sequential()结合性不一样3.3 管理参数不一样3.4 使用Dropout时不一样1 总体nn.functional.xx是底层的函数接口nn.xx是nn.functional.xxx的类封装,并且nn.Xxx都继承于一个共同祖先nn.Module。这一点导致nn.Xxx除了具有nn.fun

2020-10-17 20:58:28 5865

原创 Sklearn学习笔记5 feature_selection模块

文章目录参考资料参考资料1 https://www.cnblogs.com/stevenlk/p/6543628.html

2020-09-10 16:30:17 196

原创 Sklearn学习笔记6 cluster聚类

参考网址:https://www.studyai.cn/modules/clustering.html#contingency-matrix文章目录1 K-means2 Affinity Propagation(亲和力传播)3 Mean Shift(均值漂移)4 Spectral clustering(谱聚类)5 Hierarchical clustering(层次聚类)6 DBSCAN7 OPTICS8 Birch9 聚类性能评估9.1 Adjusted Rand index= 优点= 缺点9.2 Mu

2020-09-10 16:29:47 823

原创 Sklearn 学习笔记4 decomposition(降维)模块

@Toc1 PCA2 SVD3 Dictionary Learning4 Factor Analysis5 Independent component analysis (ICA)6 Non-negative matrix factorization (NMF or NNMF)非负矩阵分解参考网址非负矩阵分解(Non-negative Matrix Factorization ,NMF) 是在矩阵中所有元素均为非负数约束条件之下的矩阵分解方法。基本思想:给定一个非负矩阵V,

2020-09-10 09:45:36 3636

原创 Sklearn学习笔记3 model_selection模块

这里写自定义目录标题sklearn.model_selection: Model Selection1 Splitter Classessklearn.model_selection: Model Selection用户指南:请参阅交叉验证:评估估计器性能,调整估计器的超参数和 学习曲线部分,以了解更多详细信息。1 Splitter Classes...

2020-09-09 16:14:51 10637

原创 Sklearn学习笔记2 分类问题

文章目录1 KNN算法2 贝叶斯分类算法3 决策树算法4 随机森林算法5 SVM算法6 GBDT

2020-09-06 20:12:55 630

原创 SKlearn学习笔记1 回归分析

@TOC1 线性回归线性回归(Linear Regression)是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法线性回归利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模。 这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。一元线性回归:y=a+bxy=a+bxy=a+bx多元线性回归:y=a0+a1x1+a2x2+⋯+anxny=a_0+a_1x_1+a_

2020-09-03 12:55:56 1348 1

翻译 10 2017-Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks

Abstract功能磁共振成像(fMRI)已帮助表征自闭症谱系障碍(ASD)的病理生理学,并有望为ASD产生客观的生物标志物。最近的工作集中在从静止状态功能连接性措施中推导ASD生物标志物。但是,目前已经以较高的准确度识别出ASD的方法仅限于同类的小型数据集,而异构,多站点数据的分类结果则显示出较低的准确度。在本文中,我们建议使用具有长短期记忆(LSTM)的递归神经网络直接从静止状态fMRI时间序列对具有ASD的个体和典型对照进行分类。我们使用了整个大型的多站点自闭症脑成像数据交换(ABIDE)I数据集.

2020-08-20 06:55:50 569

翻译 11 2017-BrainNetCNN for Brain Networks Towards Predicting Neurodevelopment

论文地址:https://www2.cs.sfu.ca/~hamarneh/ecopy/neuroimage2017.pdfAbstract1. Introduction1.1. Related Works2. Method在这里,我们介绍了专门为网络数据输入设计的新颖的CNN层类型(第2.1.1、2.1.2、2.1.3节), 本研究中使用的数据集(第2.2节),BrainNetCNN的整体架构(第2.3节),我们如何实施BrainNetCNN(第2.4节),最后是我们的评估指标(第2.5节).

2020-08-19 07:32:32 1928 1

翻译 9 2019-Jointly Discriminative and Generative Recurrent Neural Networks for Learning from fMRI

文章目录Abstract1 Introduction2 Methods2.1 Network Architecture2.2 Extraction of Functional Communities3 Experiments3.1 Data3.2 Experimental Methods3.3 Classification Results3.4 Learned Functional Communities4 ConclusionsAbstract递归神经网络(RNN)设计用于处理时间序列数据,最近已用.

2020-08-07 12:42:48 431 2

翻译 8 2018-Combining phenotypic and rs-fMRI data for autism classification with recurrent neural network

文章目录ABSTRACT1. INTRODUCTION2. METHODS2.1. LSTM for Classification from rsfMRI2.2. Incorporating Phenotypic Information3. EXPERIMENTS3.1. Data and Preprocessing3.2. Methods Implementation and Evaluation3.3. Results and Discussion4. CONCLUSIONSABSTRACT从静止.

2020-08-06 19:48:01 469

翻译 VQA5-2018-Differential Attention for Visual Question Answering

文章目录Abstract1.Introduction2.RelatedWork3.Method3.1.FindingExemplars3.2.DifferentialAttentionNetwork(DAN)3.3.DifferentialContextNetwork(DCN)4.Experiments4.1.AnalysisofNetworkParameters4.2.Comparisonwithbaselineandstateoftheart4.3.AttentionVisualization5.Di.

2020-08-01 21:48:47 382

翻译 VQA4-2017-Hierarchical Question Image Co-Attention for VQA

文章目录Abstract1 Introduction2 RelatedWork3 Method3.1 Notation3.2 QuestionHierarchy3.3 Co-Attention3.4 EncodingforPredictingAnswers4 Experiment4.1 Datasets4.2 Setup4.3 ResultsandAnalysis4.4 AblationStudy4.5 QualitativeResults5 ConclusionAbstract近期的许多工作提出了针.

2020-07-31 22:07:20 301

翻译 VQA3-2016-A Focused Dynamic Attention Model for Visual Question Answering

文章目录Abstract1 Introduction2 Related Work3 Method Overview3.1 Problem Formulation3.2 Motivation4 Focused Dynamic Attention for VQA4.1 Question Understanding4.2 Image Understanding4.3 Focused Dynamic Attention Mechanism4.4 Multimodal Representation Fusion5 .

2020-07-26 08:04:25 398

翻译 VQA2-2017-Dual Attention Networks for Multimodal Reasoning and Matching

文章目录Abstrace1. Introduction2. Related Work2.1. Attention Mechanisms2.2. Visual Question Answering (VQA)2.3. Image-Text Matching3. Dual Attention Networks (DANs)3.1. Input Representation3.2. Attention Mechanisms3.3. r-DAN for Visual Question Answering3.4. .

2020-07-26 07:59:54 312

翻译 VQA1-2016-Stacked Attention Networks for Image Question Answering

文章目录Abstract1. Introduction2. Related Work3. Stacked Attention Networks (SANs)3.1. Image Model3.2. Question Model3.2.1 LSTM based question model3.2.2 CNN based question model3.3. Stacked Attention Networks4. Experiments4.1. Data sets4.2. Baselines and eva.

2020-07-21 20:42:16 293

翻译 6 2018-SAE-based classification of school-aged children with ASD using functional magnetic resonanc

2018-SAE-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging论文地址:https://www.researchgate.net/publication/322728713_SAE-based_classification_of_school-aged_children_with_autism_spectrum_d

2020-07-19 20:25:18 454

原创 4 2020-Fusing Structural and Functional MRIs using Graph Convolutional Networks for Autism Classific

4 2020-Fusing Structural and Functional MRIs using Graph Convolutional Networks for Autism ClassificationAbstract1.Introduction2.Graph Convolution for Autism Classification3.Proposed Approach3.1. Subject similarity using structural MRI3.2. Developing brain

2020-07-19 20:24:32 600

翻译 5 2019-Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder

文章目录ABSTRACT1. INTRODUCTION2. RELATED WORK2.1 SVM-RFE2.2 AUTO-ENCODER2.3 SOFTMAX REGRESSION3. MATERIALS AND METHODS3.1 PARTICIPANTS AND DATA PREPROCESSING3.2 CONNECTIVITY MEASURES AND FEATURE MATRICES3.3 FEATURE SELECTION BASED ON SVM-RFE3.4 FEATURE SELF-.

2020-07-19 20:21:54 675 4

翻译 7 2020-Improving the detection of ASD by combining structural and functional MRI information

原文地址:https://www.researchgate.net/publication/338664396_Improving_the_Detection_of_Autism_Spectrum_Disorder_by_Combining_Structural_and_Functional_MRI_Information文章目录Abstract1. Introduction2. Material and methods2.1. Dataset2.2. Functional data classific

2020-07-19 20:01:04 1088 3

翻译 ABIDE数据集预处理项目

文章目录1 总览2 下载地址3 Pipeline3.1 功能预处理3.2 基本加工3.3 去除有害信号3.4 加工策略3.5 注册4 Github项目网址项目网址:http://preprocessed-connectomes-project.org/abide/index.html1 总览Preprocessed Connectomes Project (PCP) 项目从Autism Brain Imaging Data Exchange (ABIDE)公众发布和开放共享预处理神经影像数据。由国际神

2020-07-16 10:43:40 9222 9

翻译 1 2018-Identification of autism spectrum disorder using deep learning and the ABIDE dataset

论文地址摘要本研究的目的是仅基于患者的大脑激活模式,应用深度学习算法从大型脑成像数据集中识别自闭症谱系障碍(ASD)患者。作者从一个由多个站点数据集组成名叫ABIDE的世界数据集调查ASD患者的大脑图像数据。ASD是一种以社会缺陷和重复行为为特征的大脑疾病。根据最近疾病控制中心的数据,美国每68名儿童中就有一名患有自闭症。作者研究了从功能性脑成像数据中客观识别ASD参与者的功能连接性模式,并试图揭示从分类中产生的神经模式。 研究结果提高了最新水平,在数据集中,ASD患者与对照组患者的识别准确率达到

2020-07-15 21:06:22 1854

翻译 3 2020-Deep Learning for Neuroimaging-based Diagnosis and Rehabilitation of ASD: A Review

文章目录Abstract1. INTRODUCTION2. SEARCH STRATEGY3. DEEP LEARNING TECHNIQUES FOR ASD DIAGNOSIS AND REHABILITATION4. CADS-BASED DEEP LEARNING TECHNIQUES FOR ADS DIAGNOSIS BY NEUROIMAGING DATA4.1. Neuroimaging ASD Datasets4.2. Preprocessing Techniques4.3. Deep N

2020-07-14 21:02:47 985

翻译 2018-GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs

2018-GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs摘要1 INTRODUCTION2 NOTATIONS3 RELATED WORK3.1 Neural attention mechanism3.2 Graph convolutional networks on large grap...

2020-05-04 22:51:25 4140 6

翻译 2016-Variational Graph Auto-Encoders

目录1 A latent variable model for graph-structured data1.1 Definitions1.2 Inference model1.3 Generative model(生成模型)1.4 Learning1.5 Non-probabilistic graph auto-encoder (GAE) model2 Experiments on link ...

2020-01-11 21:06:29 3117

翻译 2016-Structural Deep Network Embedding

文章目录ABSTRACT1. INTRODUCTION2. RELATED WORK2.1 Deep Neural Network2.2 Network Embedding3. STRUCTURAL DEEP NETWORK EMBEDDING3.1 Problem Definition3.2 The Model3.2.1 Framework3.2.2 Loss Functions3.2.3 O...

2020-01-07 12:38:52 501 1

原创 2015-LINE: Large-scale Information Network Embedding

LINE: Large-scale Information Network EmbeddingABSTRACT1. INTRODUCTION2. RELATED WORK3. PROBLEM DEFINITION4. LINE: LARGE-SCALE INFORMATION4.1 Model Description4.1.1 LINE with First-order Proximity4.1....

2020-01-02 20:55:09 1069 2

转载 生物医学网络中的图嵌入:方法,应用和评估

文章目录1、研究背景2、图嵌入方法概述3 图嵌入在生物医学网络中的应用3.1 链接预测3.2 节点分类1)蛋白质功能预测2)医学术语语义类型分类3.3 总结4、实验4.1 Datasets4.1.1 链接预测4.1.2 节点分类预测4.2 实验设置4.3 链接预测结果4.4节点分类结果4.5 超参数的影响4.6实验结果总结5 讨论和未来方向6 总结本文在https://zhuanlan.zhih...

2020-01-01 23:10:58 2888

原创 Pandas大数据分析资料

1 Pandas教程1.1 Pandas入门英文文档:https://pandas.pydata.org/.中文教程:https://www.pypandas.cn/.pandas菜鸟教程:https://blog.csdn.net/qq_42196922/article/details/90043750.莫烦pandas:https://morvanzhou.github.io/tut...

2019-10-25 13:52:41 329 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除