fftshift详解



Matlab fftshift 详解

.实信号情况

因为实信号以fs为采样速率的信号在 fs/2处混叠,所以实信号fft的结果中前半部分对应[0, fs/2],后半部分对应[ -fs/2, 0]

1)实信号fft的结果前半部分对应[0, fs/2]是正频率的结果,后半部分对应[ -fs/2, 0]是负频率的结果。大于fs/2的部分的频谱实际上是实信号的负频率加fs的结果。故要得到正确的结果,只需将视在频率减去fs即可得到频谱对应的真实负频率

2)如果要让实信号fft的结果与[-fs/2, fs/2]对应,则要fftfftshift一下即可,fftshift的操作是将fft结果以fs/2为中心左右互换

3)如果实信号fft的绘图频率f[-fs/2, fs/2],并且没有fftshift,则fft正频谱对应f[0, fs/2]的结果将混叠到(f - fs/2)的位置;

fft负频谱对应f[-fs/2, 0]的结果混叠到 f + fs - fs/2 的位置,注意这里f为负值,也就是说此种情况下fft负频谱对应的视在频率减去fs/2即可得到频谱对应的真实负频率

 

.复信号情况

1)复信号没有负频率,以fs为采样速率的信号,fft的频谱结果是从[0,fs]的。

2)在 f> fs/2时,对复信号的fft结果进行fftshift会产生频率混叠(将下面的示例2中的频率从f=15改为f=85可以验证f=85的谱线在fftshift后跑到 f= -15 = 85 - fs = 85 - 100的位置了),所以复信号也一般要求 f <= fs/2

3)在对雷达的慢时间维(复信号)进行fft后,由于要用doppler= ((0:LFFT-1)/LFFT  - 0.5)*PRF; 计算多普勒频率,所以对该慢时间信号fft后要fftshift下,以便和正确的频率单元相对应。注意多普勒频率fd < = PRF/2 时才测的准!

fftshift

作用:将零频点移到频谱的中间

用法:

Y=fftshift(X)
Y=fftshift(X
dim)

描述:fftshift移动零频点到频谱中间,重新排列fft,fft2fftn的输出结果。将零频点放到频谱的中间对于观察傅立叶变换是有用的。

示例1 -实信号的情况:

clf;

fs=100;N=256;   %采样频率和数据点数
n=0:N-1;t=n/fs;   %
时间序列
x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %
信号

y1=fft(x,N);    %对信号进行快速Fourier变换
y2=fftshift(y1);

mag1=abs(y1);     %求得Fourier变换后的振幅
mag2=abs(y2);    

f1=n*fs/N;    %频率序列
f2=n*fs/N-fs/2;

subplot(3,1,1),plot(f1,mag1,'r');  %绘出随频率变化的振幅
xlabel('
频率/Hz');
ylabel('
振幅');title('1usual FFT','color','r');grid on;

subplot(3,1,2),plot(f2,mag1,'b');  %绘出随频率变化的振幅
xlabel('
频率/Hz');
ylabel('
振幅');title('2FFT without fftshift','color','b');gridon;

subplot(3,1,3),plot(f2, mag2,'c');  %绘出随频率变化的振幅
xlabel('
频率/Hz');
ylabel('
振幅');title('3FFT after fftshift','color','c');gridon;

结论:

1)如果期望绘制的幅频图的频率范围为0~fs,则无需运行fftshift变换,正频率对应在[0, fs/2],

大于fs/2的频谱的频率值为对应[-fs/2  , 0 ]负频率+ fs,注意f是负频率,是个负数。如图1

2)如果期望绘制的幅频图的频率范围为-fs/2~fs/2,则需要运行fftshift变换,如图3

如果不变换,图示的响应频点会发生变换,如图2,分析见顶端。

示例2 -复信号的情况:

close all; clear; clf;

fs=100;N=256;   %采样频率和数据点数
n=0:N-1;t=n/fs;   %
时间序列
x=0.5*exp(j*2*pi*15*t)+2*exp(j*2*pi*40*t); %
信号

y1=fft(x,N);    %对信号进行快速Fourier变换
y2=fftshift(y1);

mag1=abs(y1);     %求得Fourier变换后的振幅
mag2=abs(y2);    

f1=n*fs/N;    %频率序列
f2=n*fs/N-fs/2;

subplot(3,1,1),plot(f1,mag1,'r');  %绘出随频率变化的振幅
xlabel('
频率/Hz');
ylabel('
振幅');title('1usual FFT','color','r');grid on;

subplot(3,1,2),plot(f2,mag1,'b');  %绘出随频率变化的振幅
xlabel('
频率/Hz');
ylabel('
振幅');title('2FFT without fftshift','color','b');gridon;

subplot(3,1,3),plot(f2,mag2,'c');   %绘出随频率变化的振幅
xlabel('
频率/Hz');
ylabel('
振幅');title('3FFT after fftshift','color','c');gridon;

   ¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥¥

说明:以上为转载内容。转载地址:http://wenku.baidu.com/link?url=oWrQiwZhXZDML52WKvXorP6-k1MDXWdl9iQg6TfOHDZF9ztvhexoyw04jSiHdISehvz6QqoXRDFbvnWOmUpSJP4VquYAWddOtk248Zgm0v_

看了上面的内容后,大家可能还是不明白fftshift是怎么转换的,现在上一张图解释。DFT是对fft的结果进行离散采样,DFT也是为了计算机处理的需要而产生的一种运算,此处的fftshift实际上是为了把结果和fft运算的结果一致。现在大家可能还是不明白,好,,我来解释。

fft:对模拟信号进行变换,变换结果是左右对称的,有负频率,如下图(a)中的作图所示。

DFT的求和区间是0~N-1,DFT的物理意义是对fft的结果等间隔的采样N点,但是人为的规定0~N-1使得只采样了正频率,和fft结果不一致。由于fft的对称性或者说是周期性(见(b)的右图),所以可以以DFT结果以Fs/2为中心, 把Fs/2频率右半部分移到左半部分(即N/2~N-1)个点平移到负半轴,这样的结果的形状就同(a)中右面的图一致了,这也即是fftshift的原因。。其实是为了与fft结果一致。

以上为转载内容。转载地址:http://wenku.baidu.com/link?url=oWrQiwZhXZDML52WKvXorP6-k1MDXWdl9iQg6TfOHDZF9ztvhexoyw04jSiHdISehvz6QqoXRDFbvnWOmUpSJP4VquYAWddOtk248Zgm0v_


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值