1、LDA线性判别分析
http://blog.csdn.net/raby_gyl/article/details/20362373
也称FLD(Fisher线性判别)是一种有监督的学习方法(supervised learning)。
LDA的基本思想是:
找到一个最佳的判别矢量空间,使得投影到该空间的样本的类间离散度与类内离散度比达到最大。
LDA的目的:
是从高维空间中提取出最优判别力的低维特征,这些特征使同一类别的样本尽可能的靠近,同时使不同类别的样本尽可能的分开,即选择使样本的类间散布矩阵和类内散布矩阵达到最大比值的特征。因此,用FLD得到的特征不但能够较好的表示原始数据,而且更适合分类。
LDA的两个基本用途:
降维和分类器(例如OpenCV中将LDA和K邻近分类器封装为一个“分类器”,这里K=1。所以本质还是降维和使数据易于可分)
LDA降维思想:
1)训练模型
数据(D):高维特征矢量
训练(T):操作模式
规则(R):训练数据的规则
黑盒子(B):如果我们只是想应用而不想理解其内部的复杂原理,我们可以不关系黑盒子里面是如何操作的。
模型(M):训练的结果,即产生(P)一个模型,这里是上面描述的一个矢量空间。
2)将高维数据送入模型实现降维
LDA分类器思想:
这里的分类思想,是OpenCV一种封装的分类思想,OpenCV在人脸识别算法中将LDA+1—邻近分类器组合,构造所谓的“合成分类器”,相当于类中的封装。
1)将所有训练样本图像投影到LDA子空间
2)将测试图像投影到LDA子空间
3)找到投影后的训练样本集和测试图像之间的最邻近,即如果测试图像与训练样本中的b最邻近,b属于C类,那么测试图像也属于C类。
LDA原理和计算过程:
LDA是一种线性分类器,它可以看作是SVM的简化版本。
正因为它是一种线性分类器,所以对于K-分类问题,有K-1个线性函数:
这个线性函数就是一个分类器。x是输出矢量,w是权重,y为输出值。对于两类,我们设置一个阈值y0,如果对于某些矢量x,带入到线性函数中的输出值y大与y0,则为一类,小于y0则为另一类。其实可以理解为:对于输入矢量x,这些矢量在一个多维 矢量空间中分布,wk就是一个权重,或者认为一个矢量空间,也或者认为是一个方向矢量,我们将x投影到矢量空间,或者说沿着这个方向上的投影后的值变为y,每一个矢量x对应投影后的一个值,对于不同的类别有不同的y值,或者y值范围,这使得数据变的更加容易可分。
注:关于类间离散度矩阵Sb的秩的参考理解(不是推导):
例如:
对于二维点集的二分类问题。由于是二分类问题,那么上述公式3-36变为Wfld={W1},p为1。那么利用公式3-37后的,y表示矢量x在w1方向的投影坐标。此时y数据的分布变的更加容易可分。
换角度理解:
我们知道Wlfd={w1,w2,w3,...,wp},其中p<=C-1;
我们知道对于C类,如果用线性分类器进行分类的话,需要C-1个分类器。如对于两类,我们只需要一个分类函数,从中间劈开。
我们组合下面两个公式进行理解:
上述第一个公式表示为一个线性分类器,第二个公式表示p个线性分类器(这里的p取C-1)。
一个分类器可以对二类问题进行分类,那么第一个公式表示待分类矢量x经过投影变化后得到的y值更加容易可分。
p个分类器可以对p+1(即C)类问题进行分类,那么第二个公式表示待分类矢量x经过投影变化后得到矢量y更加容易可分。
应用降维思路:
LDA其他知识
PCA对光照的灵敏度将高。LDA对光照不如PCA对光照的敏感。LDA的性能同样严重的依赖于输入的数据。
LDA也可以像PCA那样对图像进行重建,但是LDA重建效果没有PCA好,这是因为PCA利用的个体的主成份特征,而LDA利用了辨别个体之间不同的特征。
2、PCA——主成份分析
PCA又叫K-L变换,是一个无监督的学习方法。
PCA和LDA类似这里不在书写,网上资料也一大把。只给出几个连接:
3、PCA+LDA
Wfld表示LDA的特征矢量构成的,Wpca表示PCA的特征矢量构成的,u是PCA分析中所有样本的均值。z矢量的维数为类别数目-1.