监视我的手机:数据都去哪儿了?

本文通过部署ss代理服务,监控了一部安卓手机的所有网络请求,记录了数据流向,并使用Pyecharts进行了数据可视化分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

监视我的手机:数据都去哪儿了?

现在的人几乎是全部透明的。我心里就想,马化腾肯定天天在看我们的微信,因为他都可以看的,随便看,这些问题非常大。” —— 李书福

d45245337fcf244278692ece1badb4cf.jpeg

日常使用的手机可能比想象的更加活跃,当微信聊天、淘宝购物、抖音看视频甚至是喵的手机待机啥也不干,某些 App 都会悄悄地与服务器交换着数据。这些数据包括微信聊天记录、地理位置、通讯录、通话记录、QQ消息,甚至短信内容...

我一直想知道我的数据都去了哪里哪些 App 在源源不断上传数据数据被哪些公司搜集了

前一段时间,浏览过一篇国外的博客《Tracking my phone's silent connections》,文中作者 Kushal 使用 WireGuard 代理的方式,监控自己的手机 1 个星期,截获手机与服务器之间的所有请求,最后统计了手机到底悄悄地在和哪些公司的服务器进行连接。

受到 Kushal 的启发,我决定使用部署 ss 的方式截获我个人的手机数据。

监控方案

e4871cf99bad741c5c15f77f3a9095e6.jpeg

实验设备

  • 日常使用的安卓手机 x1

  • 国内某云服务器 x1

代理方案

手机的数据都是与不同的服务器进行着连接,如何获取所有的连接?首先我想到的是手机要通过 Wi-Fi 路由器上网,那么如果在路由器端截取数据包,会比较容易。但是无法获取手机的移动基站流量。

于是在 1 台云服务器上搭建了个代理服务,手机客户端设置为全局代理连接 VPN 服务器,就可以在服务器端获取所有的数据请求。

部署服务

为了保证上网访问速度,提升网络体验,推荐选择国内的服务器,代理服务器首先安装 Docker

$ sudo apt-get -y install docker.io

启动 ss Docker 容器

通过阅读 ss 的文档,可知在启动 ss 时只需要加上 -v 参数(Verbose mode)即可输出详细 Log。同时使用 tmux 让服务在后台运行,将输出以追加的方式( >>)重定向到 logs.txt 文件。

$ tmux
$ sudo docker run -t --name ss -p 9000:9000 mritd/shadowsocks -s "-s 0.0.0.0 -p 9000 -m aes-256-cfb -k yourpassword --fast-open -v" >> logs.txt

手机客户端

在手机端安装 ss 或者酸酸乳客户端,配置代理服务器地址、端口、密码与加密方式,代理模式设置为全局代理。

然后在服务器端,使用 tail 命令从指定点开始将从文件写到标准输出,显示实时 Log,服务搭建成功

$ tail -f logs.txt

当手机使用微信时,记录的 Log 日志如下

b21ecaadcc0bdfa891a01bd8b1588750.jpeg

数据处理

DNS 域名解析

DNS(Domain Name System),翻译过来就是域名系统,是互联网上作为域名和 IP 地址相互映射的一个分布式数据库。获取到的记录大多数是域名,需要先解析成 IP 地址

import socket
def domain_to_ip(domain):
    return socket.gethostbyname(domain)

例如,解析 www.baidu.com 的 IP 地址

domain_to_ip('www.baidu.com')
'14.215.177.38'

IP 地理数据库

推荐使用 ip2region,一个开源的 IP 到地区的映射库,具有 99.9% 准确率,提供 Binary,B 树和纯内存三种查询快速搜索算法。

>> result = ipgeo.find('www.baidu.com')
>> print(result)
{'ip': '14.215.177.38', 'city_id': 2140, 'country': '中国', 'province': '广东省', 'city': '广州市', 'operator': '电信'}

保存数据

df.to_csv(out_csv, index=False)
print('saved to {}'.format(out_csv))

数据可视化

经过十多天的记录,俺一共记录了 280059 条记录

cd9eff662e9ecbcabfc13d822bbd7bf1.png

接下来使用 Pyecharts 对数据进行可视化。Echarts 是百度开源的一个数据可视化 JS 库,而 Pyecharts 是一个用于生成 Echarts 图表 Python 库。

主要的互联网公司

4dacbc821461e2664daa6e9e8248f893.jpeg

875bced1faf5c69a01f8a8d90f70b46f.jpeg

从上图可以看出,俺的安卓手机(安装了谷歌服务),在国内的网络环境,请求次数最多还是 Google。

然后就是日常使用的微信和 QQ 了。由于平时会看 B 站视频,所以 Bilibili 排名第三 orz...

我手机安装的是 QQ 输入法,但是去往 sougou.com 的请求居然有 1952 条,查看了用户协议才发现:“QQ输入法”是经腾讯公司认可,由搜狗公司发布的客户端软件。

还有像美团、高德地图这样的软件,平时并不怎么频繁使用,网络请求却异常地活跃,不知道偷偷摸摸干着啥。

夜间活动排行

过滤出凌晨 00:00 ~ 06:00 时间段的活动,可以发现去往 *.qq.com 的连接始终是最多的。

31e0ea61f81022b27f0c86968793557a.jpeg

全球分布

b7f6edc6de6e6d60da50745efe99de93.jpeg

528e66adc744efcffb2465a0864ed462.jpeg

国内各省份分布

9b521394abd851eba871680c3c371b4f.jpeg

可以看到俺的流量大多去往了广东、上海和北京这样的地方,台湾这么高的原因是谷歌的服务器在那边,DNS 解析谷歌的域名都指向了台湾。

电信运营商

6fdffc117d8f84eed528db9c3419ef7c.jpeg

服务器端口统计

3c26abe0622595ef6bae23a4b5030fa6.jpeg

其他

在一加手机的网络请求中,发现了一些发往 oppo 服务器的请求,看来不光硬件由 oppo 代工,连软件也是。

[('epoch.cdo.oppomobile.com', 208),
 ('gslb.cdo.oppomobile.com', 38),
 ('istore.oppomobile.com', 38),
 ('opsapi.store.oppomobile.com', 34),
 ('api.cdo.oppomobile.com', 22),
 ('message.pull.oppomobile.com', 21),
 ('st.pull.oppomobile.com', 13),
 ('cdopic0.oppomobile.com', 9),
 ('newds01.myoppo.com', 9),
 ('httpdns.push.oppomobile.com', 4),
 ('conn1.oppomobile.com', 1),
 ('iopen.cdo.oppomobile.com', 1)

最后

警告: 请勿用于非法目的,非法获取他人隐私属于犯罪!

完整代码

https://github.com/wangshub/tracking-my-phone

  • 如果需要更为详细的数据,可以考虑使用 mitmproxy 代理,能够抓取 HTTPS 数据,并提供 Python API。

参考链接

  • Tracking my phone's silent connections

  • ip2region: Ip2region is a offline IP location library

  • Python Data Analysis Library

  • Pyecharts: A Python Echarts Plotting Library.

a85018dd86a83941ba0dac32dd6133c7.png

评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值