【XAI】透视深度学习:CNN与Transformer的可解释性方法

深度学习模型在图像识别、自然语言处理等任务中取得了显著的成功。然而,它们的复杂性常常使得它们变得不透明,导致“黑箱”问题。可解释性方法旨在揭示这些模型如何做出决策,这对于建立信任、调试模型和确保公平性至关重要。在本文中,我们将探讨用于视觉任务的卷积神经网络(CNNs)和用于文本及序列数据的Transformer的可解释性方法,并为初学者提供详细的原理说明及Python代码示例。

目录

CNN的可解释性方法

1. 显著性图(Saliency Maps) / 梯度图(Gradient Maps)

2. 类激活图(Class Activation Maps - CAM, Grad-CAM, Grad-CAM++)

3. 基于扰动的方法

Transformer的可解释性方法

1. 注意力机制(Attention Mechanisms)的可视化与解释

2. 对序列数据和文本数据的解释

Python实现

CNN示例:显著性图

Transformer示例:注意力可视化与归因

结论



CNN的可解释性方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值