深度学习模型在图像识别、自然语言处理等任务中取得了显著的成功。然而,它们的复杂性常常使得它们变得不透明,导致“黑箱”问题。可解释性方法旨在揭示这些模型如何做出决策,这对于建立信任、调试模型和确保公平性至关重要。在本文中,我们将探讨用于视觉任务的卷积神经网络(CNNs)和用于文本及序列数据的Transformer的可解释性方法,并为初学者提供详细的原理说明及Python代码示例。
目录
1. 显著性图(Saliency Maps) / 梯度图(Gradient Maps)
2. 类激活图(Class Activation Maps - CAM, Grad-CAM, Grad-CAM++)
1. 注意力机制(Attention Mechanisms)的可视化与解释