【XAI】评估XAI方法与实践应用

一、XAI评估指标示例代码开发

1. 忠诚度(Fidelity)示例

忠诚度衡量解释与模型真实决策的一致性,常用输入扰动法(Perturbation-based)实现。示例中通过逐步遮蔽重要特征,观察模型输出变化。

 

python

解释

import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 加载数据与训练模型 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, random_state=42) model = RandomForestClassifier(random_state=42) model.fit(X_train, y_train) # 简单特征重要性排序(用模型自带的feature_importances_) feature_importances = model.feature_importances_ sorted_idx = np.argsort(feature_importances)[::-1] def fidelity_perturbation(mod

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值