题意:给出一个多边形,放在一个木板上,有且仅有多边形的一条边和木板接触。木板与多边形接触的部分是空的。所以多边形有可能掉下来。
问题是:有多少种方案使多边形不掉下来。不同的边接触表示不同的方案。
思路:枚举每一个边,判断边的两个内角是否是钝角,是钝角就不会掉下来。
代码如下:
#include <cstdio>
#include <vector>
#include <queue>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
template<class T>
inline bool read(T &n){
T x = 0, tmp = 1; char c = getchar();
while ((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
if (c == EOF) return false;
if (c == '-') c = getchar(), tmp = -1;
while (c >= '0' && c <= '9') x *= 10, x += (c - '0'), c = getchar();
n = x*tmp;
return true;
}
template <class T>
inline void write(T n) {
if (n < 0) {
putchar('-');
n = -n;
}
int len = 0, data[20];
while (n) {
data[len++] = n % 10;
n /= 10;
}
if (!len) data[len++] = 0;
while (len--) putchar(data[len] + 48);
}
const int MAX = 1010;
const double eps = 1e-8;
int dcmp(double x)
{
if(fabs(x) < eps)
return 0;
else if(x > eps)
return 1;
else
return -1;
}
struct point{
double x,y;
point (double a=0.0,double b=0.0):x(a),y(b){}
point operator - (const point &a) const
{
return point(x -a.x,y - a.y);
}
};
double dot(const point &a,const point &b)
{
return a.x * b.x + a.y * b.y;
}
point p[MAX];
int main(void)
{
//freopen("input.txt","r",stdin);
int N;
while(scanf("%d", &N) != EOF){
for(int i = 1 ; i <= N; ++i)
scanf("%lf %lf", &p[i].x,&p[i].y);
p[0] = p[N];p[N+1] = p[1];p[N+2] = p[2];
int cnt = 0;
for(int i = 1; i <= N; ++i){
point p1 =p[i-1],p2 =p[i],p3 = p[i+1],p4 = p[i+2];
double d1 = dot(p1 - p2,p3 -p2);
double d2 = dot(p2 - p3, p4 - p3);
if(dcmp(d1) < 0 || dcmp(d2) < 0)
cnt++;
}
printf("%d\n",cnt);
}
}