题意:给出一个N*N的方格,每个方格有一个值。对于每次修改,给出一个点的坐标,将其修改为以其为中心的长度为L的正方形的区域中,最大值和最小值和的一半。同时输出这个值。
思路:二维动态RMQ,这个只能上二维线段树。抄的白书。
代码如下:
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
const int INF = 1 << 30;
const int maxn = 4010;
struct IntervalTree2D{
int Max[maxn][maxn],Min[maxn][maxn],n,m;
int xo,xleaf,x1,y1,x2,y2,x,y,v,vmax,vmin;
void query1D(int o, int L, int R){
if(y1 <= L && R <= y2){
vmax = max(Max[xo][o],vmax);
vmin = min(Min[xo][o],vmin);
}
else{
int M = L + (R - L) / 2;
if(y1 <= M) query1D(o*2, L, M);
if(M < y2) query1D(o*2 + 1,M + 1, R);
}
}
void query2D(int o, int L, int R){
if(x1 <= L && R <= x2){
xo = o;
query1D(1,1,m);
}
else{
int M = (R + L)>>1;
if(x1 <= M) query2D(o*2, L,M);
if(M < x2) query2D(o*2 + 1,M + 1,R);
}
}
void modify1D(int o, int L, int R){
if(L==R){
if(xleaf) {Max[xo][o] = Min[xo][o] = v; return;}
Max[xo][o] = max(Max[xo*2][o],Max[xo*2+1][o]);
Min[xo][o] = min(Min[xo*2][o],Min[xo*2+1][o]);
}
else{
int M = (R + L) >>1;
if(y <= M) modify1D(o*2,L,M);
else modify1D(o*2+1,M+1,R);
Max[xo][o] = max(Max[xo][o*2],Max[xo][2*o+1]);
Min[xo][o] = min(Min[xo][o*2],Min[xo][2*o+1]);
}
}
void modify2D(int o, int L,int R){
if(L==R){xo = o; xleaf = 1; modify1D(1,1,m);}
else{
int M = (L+R)>>1;
if(x <= M) modify2D(o*2,L,M);
else modify2D(o*2+1,M+1,R);
xo = o; xleaf = 0; modify1D(1,1,m);
}
}
void query(){vmax = -INF,vmin = INF;query2D(1,1,n);}
void modify(){modify2D(1,1,n);}
} t;
int main(void)
{
//freopen("input.txt","r",stdin);
int T,N,Q;
int x,y,l;
scanf("%d",&T);
for(int cas = 1; cas <= T; ++cas){
printf("Case #%d:\n",cas);
scanf("%d", &N);
t.n = t.m = N;
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= N; ++j){
scanf("%d",&t.v);
t.x = i;t.y = j;
t.modify();
}
scanf("%d", &Q);
for(int i = 0; i < Q; ++i){
scanf("%d %d %d",&t.x,&t.y,&l);
t.x1 = max(1,t.x - l / 2);
t.x2 = min(N,t.x + l / 2);
t.y1 = max(1,t.y - l / 2);
t.y2 = min(N,t.y + l / 2);
t.query();
t.v = (t.vmax + t.vmin) >> 1;
printf("%d\n",t.v);
t.modify();
}
}
return 0;
}