SPOJ 220. Relevant Phrases of Annihilation

题意:给出N个字符串,求出最长的子串,满足在每个字符串中出现至少有两次不重叠的位置。

思路:将N个字符串用没有出现且不相同的字符连接。二分答案,用答案进行分组。因为要不重叠,所以我们要记录每个字符串中该子串出现的位置,最后判断是否有重叠。

注意:非常要注意的地方就是考虑height的关系。当开始一个组的时候,出现height >= ans,其实会添加两个合法位置。但是组在增长的时候,只能添加一个合法位置。这点要切记切记。

代码如下:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <set>

using namespace std;

    static const int maxn =1001000;//three times of length
    int rk[maxn];//0 - n-1
    int sa[maxn];//1 - n
    int height[maxn];//1 - n
    int wa[maxn],wb[maxn],wv[maxn],ws[maxn];

    #define F(x) ((x)/3 + ((x)%3 == 1 ? 0:tb))
    #define G(x) ((x) < tb ? (x)*3+1 : ((x)-tb)*3 + 2)

    int c0(int *r, int a, int b){
        return r[a] == r[b] && r[a+1] == r[b+1] && r[a+2] == r[b+2];
    }

    int c12(int k, int *r, int a,int b){
        if (k == 2)
            return r[a] < r[b] || r[a] == r[b] && c12(1,r,a+1,b+1);
        else
            return r[a] < r[b] || r[a] == r[b] && wv[a+1] < wv[b+1];
    }

    void radix_sort(int *r, int *a,int *b,int n,int m) {
        int i;
        for (i = 0; i < n; i++)    wv[i] = r[a[i]];
        for (i = 0; i < m; i++)    ws[i] = 0;
        for (i = 0; i < n; i++)    ws[wv[i]]++;
        for (i = 1; i < m; i++)    ws[i] += ws[i-1];
        for (i = n-1; i >= 0; i--) b[--ws[wv[i]]] = a[i];
        return ;
    }

    void dc3(int *r,int *sa,int n, int m){
        int i,j,*rn = r + n, *san = sa + n;
        int ta = 0, tb = (n+1)/3,tbc = 0, p;
        r[n] = r[n+1] = 0;
        for(i = 0; i < n; i++)
            if(i%3 != 0) wa[tbc++] = i;

        radix_sort(r+2, wa, wb, tbc, m);
        radix_sort(r+1, wb, wa, tbc, m);
        radix_sort(  r, wa, wb, tbc, m);

        for (p = 1, rn[F(wb[0])] = 0, i = 1; i < tbc; i++)
            rn[F(wb[i])] = c0(r,wb[i-1],wb[i]) ? p-1 : p++;

        if(p < tbc) dc3(rn, san, tbc, p);
        else
            for (i = 0; i < tbc; i++) san[rn[i]] = i;

        for(i = 0; i < tbc; i++)
            if (san[i] < tb) wb[ta++] = san[i]*3;

        if(n%3 == 1) wb[ta++] = n-1;

        radix_sort(r, wb, wa, ta, m);
        for(i = 0; i < tbc; i++)
            wv[wb[i]=G(san[i])] = i;

        for(i = 0,j = 0,p = 0; i < ta && j < tbc; p++)
            sa[p] = c12(wb[j]%3,r,wa[i],wb[j]) ? wa[i++] : wb[j++];
        for( ; i < ta; p++) sa[p] = wa[i++];
        for ( ; j < tbc; p++) sa[p] = wb[j++];
        return ;
    }
        void calc_sa(int *r, int n, int m){//attention: 1 <= r[i] <= m
        r[n] = 0;//add zero, length : n + 1
        dc3(r,sa,n+1,m);
    }
    void calc_height(int *r,int n){
        int i,j,k = 0;
        for (i = 0; i < n+1; i++)
            rk[sa[i]] = i;
        for (i = 0; i < n; height[rk[i++]] = k)//according to rank, only n times
            for (k ? k-- : 0, j = sa[rk[i]-1]; r[i+k] == r[j+k]; k++)
                ;
        return;
    }
    void print(int * r, int n){
        for(int i = 1; i <= n; ++i){
            for(int j = sa[i]; j < n; ++j)
                putchar(r[j]);
            putchar('\n');
        }
    }
//    static const int MAX = 200100;
//    int p[MAX];
//    int d[MAX][20];
//    void rmq_init(int n){
//        p[0] = -1;
//        for(int i = 1; i <= n; ++i)
//            p[i] = i & (i-1)?p[i-1]:p[i-1]+1;
//        for(int i = 1; i <= n; ++i) d[i][0] = height[i];
//        for(int j = 1; j <= p[n]; ++j)
//            for(int i = 1; i + (1 << j) - 1 <= n; ++i)
//                d[i][j] = min(d[i][j-1],d[i+(1<<j-1)][j-1]);
//    }
//    int rmp_query(int l, int r){
//        int k = p[r - l + 1];
//        return min(d[l][k],d[r - (1<<k) + 1][k]);
//    }
//    int lcp(int l, int r){//l,r is the start postion of two suffix
//        l = rank[l], r = rank[r];//we should turn them to the index in sa
//        if(l > r) swap(l,r);l++;
//        return rmp_query(l,r);
//    }

int r[200010];
char str[10010];
int p[200010];
int n,N;
set<int> records[20];

bool sat(int mid)
{
//    for(int j = 0; j < N; ++j)
//                printf("%d%c",records[j].size(), j == N - 1?'\n':' ');
    for(int i = 0; i < N; ++i){
        if(records[i].size() < 2) return false;
        set<int>::iterator it1 = records[i].begin(), it2 = records[i].end();
        it2--;
        if(*it2 - *it1 < mid) return false;
    }
    return true;
}

bool judge(int mid)
{
    for(int i = 1; i <= n; ++i){
        if(height[i] < mid){
            for(int j = 0; j < N; ++j)
                records[j].clear();
            continue;
        }
        records[p[sa[i]]].insert(sa[i]);
        records[p[sa[i-1]]].insert(sa[i-1]);
        if(sat(mid)) return true;
    }
    return false;
}

int main(void)
{
    //freopen("input.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&N);
        n = 0;
        int maxlen = 0;
        for(int i = 0; i < N; ++i){
            scanf("%s",str);
            int len = strlen(str);
            copy(str,str+len,r+n);
            fill(p+n,p+n+len,i);
            n += len;
            maxlen = max(maxlen,len);
            r[n++] = '$'+i;
        }
        calc_sa(r,n,256);
        calc_height(r,n);
       // print(r,n);
        //printf("%d\n",judge(2));
        int lb = 0, ub = maxlen + 1;
        while(lb + 1 < ub){
            int mid = (lb + ub) >> 1;
            //printf("%d\n",mid);
            if(judge(mid)) lb = mid;
            else ub = mid;
        }
        printf("%d\n",lb);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值