POJ 2096 Collecting Bugs 概率DP

题意:一个软件有S个模块,N种BUG。每天会等概率的在S个模块中,等概率的出现一种BUG。求期望的天数,使每个模块都出现一个BUG且所有N种BUG都要出现。

思路:概率DP,但是这里有一个问题是,可能需要无穷多的天数来完成这一件事,所以用E(x) = Σp(x)*x公式在这里是不可行的。

    dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
    显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
    dp[i][j]状态可以转化成以下四种:
        dp[i][j]    发现一个bug属于已经找到的i种bug和j个子系统中
        dp[i+1][j]  发现一个bug属于新的一种bug,但属于已经找到的j种子系统
        dp[i][j+1]  发现一个bug属于已经找到的i种bug,但属于新的子系统
        dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
    以上四种的概率分别为:
    p1 =     i*j / (n*s)
    p2 = (n-i)*j / (n*s)
    p3 = i*(s-j) / (n*s)
    p4 = (n-i)*(s-j) / (n*s)
    又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
    所以:
    dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
    整理得:
    dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
            = ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
代码如下:

#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

const int MAX = 1010;

double dp[MAX][MAX];

int main(void)
{
    int N,S;
    scanf("%d%d",&N,&S);
    {
        dp[N][S] = 0.0;
        for(int i = N; i >= 0; --i)
            for(int j = S; j >= 0; --j){
                if(i == N && j == S)
                    continue;
                dp[i][j] = (N * S + (N - i) * j * dp[i+1][j] + i * (S - j) * dp[i][j+1] + (N - i) * (S - j) * dp[i+1][j+1]) / (N * S - i * j);
            }
        printf("%.4f\n",dp[0][0]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值