题意:一个软件有S个模块,N种BUG。每天会等概率的在S个模块中,等概率的出现一种BUG。求期望的天数,使每个模块都出现一个BUG且所有N种BUG都要出现。
思路:概率DP,但是这里有一个问题是,可能需要无穷多的天数来完成这一件事,所以用E(x) = Σp(x)*x公式在这里是不可行的。
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统
以上四种的概率分别为:
p1 = i*j / (n*s)
p2 = (n-i)*j / (n*s)
p3 = i*(s-j) / (n*s)
p4 = (n-i)*(s-j) / (n*s)
又有:期望可以分解成多个子期望的加权和,权为子期望发生的概率,即 E(aA+bB+...) = aE(A) + bE(B) +...
所以:
dp[i,j] = p1*dp[i,j] + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] + 1;
整理得:
dp[i,j] = ( 1 + p2*dp[i+1,j] + p3*dp[i,j+1] + p4*dp[i+1,j+1] )/( 1-p1 )
= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j )
代码如下:
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAX = 1010;
double dp[MAX][MAX];
int main(void)
{
int N,S;
scanf("%d%d",&N,&S);
{
dp[N][S] = 0.0;
for(int i = N; i >= 0; --i)
for(int j = S; j >= 0; --j){
if(i == N && j == S)
continue;
dp[i][j] = (N * S + (N - i) * j * dp[i+1][j] + i * (S - j) * dp[i][j+1] + (N - i) * (S - j) * dp[i+1][j+1]) / (N * S - i * j);
}
printf("%.4f\n",dp[0][0]);
}
return 0;
}