Lasso回归的坐标下降法推导

这篇博客详细介绍了Lasso回归中坐标下降法的原理和应用。通过目标函数RSS和L1正则化的推导,阐述了RSS偏导数、正则项偏导数的计算,以及整体偏导数在Lasso成本函数中的表达。文中还提供了坐标下降法的伪代码,并从概率角度解释了Lasso回归与拉普拉斯分布的关系,以及MAP推导过程。最后,博主邀请读者加入机器学习交流群进行讨论。
摘要由CSDN通过智能技术生成

目标函数

Lasso相当于带有L1正则化项的线性回归。先看下目标函数: R S S ( w ) + λ ∥ w ∥ 1 = ∑ i = 0 N ( y i − ∑ j = 0 D w j h j ( x i ) ) 2 + λ ∑ j = 0 D ∣ w j ∣ RSS(w)+\lambda \Vert w\Vert_1=\sum_{i=0}^{N}(y_i-\sum_{j=0}^D{w_jh_j(x_i)})^2+\lambda \sum_{j=0}^{D}|w_j| RSS(w)+λw1=i=0N(yij=0Dwjhj(xi))2+λj=0Dwj
这个问题由于正则化项在零点处不可求导,所以使用非梯度下降法进行求解,如坐标下降法或最小角回归法。

坐标下降法

本文介绍坐标下降法。
坐标下降算法每次选择一个维度进行参数更新,维度的选择可以是随机的或者是按顺序。
当一轮更新结束后,更新步长的最大值少于预设阈值时,终止迭代。

下面分为两部求解

RSS偏导

在这里插入图片描述
下面做一下标记化简
ρ j = ∑ i = 1 N h j ( x i ) ( y i − ∑ k ≠ j w k h k ( x i ) ) \rho_j=\sum_{i=1}^Nh_j(x_i)(y_i-\sum_{k \neq j }w_kh_k(x_i)) ρj=i=1Nhj(xi)(yik=jwkhk(xi))
z j = ∑ i =

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值