浅谈人工智能之基于AutoGen Studio+Ollama本地大模型构建AI Agent
摘要
随着人工智能技术的飞速发展,大型语言模型已成为推动创新应用的关键力量。然而,云服务的使用虽然便捷,但面临着数据安全、延迟及成本等挑战。为解决这些问题,越来越多的开发者选择在本地部署大模型。本文将介绍如何利用AutoGen Studio与Ollama这一强大的组合,在本地搭建高效、安全的AI Agent。通过这一方案,开发者不仅能够享受大模型的强大功能,还能确保数据的私密性和降低运行成本。
环境准备
之前的文档介绍中,我们已经介绍了如何搭建AutoGen Studio和Ollama环境。
用户可以通过查看如下资料:
浅谈人工智能之基于anaconda的AutoGen Studio环境搭建
浅谈人工智能之Linux:基于ollama进行本地化大模型部署
实例说明
我们通过AI Agent使用自然语言让用户登录平台,模拟这个过程。
Skills设置
第一步:我们在AutoGen Studio中点击Skills
第二步:点击new Skill
第三步:在跳出来的界面中设置如下内容
Name:encrypt_password
Description:encrypt_password
左侧输入的代码如下:
import base64
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.backends import default_backend
import logging
def encrypt_password(passwd, logger=None):
"""
Encrypts the given password using AES/CBC/NoPadding and encodes it to Base64.
:param passwd: The password to encrypt.
:param logger: An optional logger object for logging the result.
:return: The Base64 encoded encrypted password.
"""
backend = default_backend()
KEY = b'l32DoqKUYQP0N7e1' # key value
IV = b'132b0c8a7a6e072e' # IV offset
cipher = Cipher(algorithms.AES(KEY)