DeepLearning tutorial(1)Softmax回归原理简介+代码详解

DeepLearning tutorial(1)Softmax回归原理简介+代码详解


@author:wepon

@blog:http://blog.csdn.net/u012162613/article/details/43157801


本文介绍Softmax回归算法,特别是详细解读其代码实现,基于python theano,代码来自:Classifying MNIST digits using Logistic Regression,参考UFLDL


一、Softmax回归简介

关于算法的详细教程本文没必要多说,可以参考UFLDL。下面只简单地总结一下,以便更好地理解代码。
Softmax回归其实就相当于多类别情况下的逻辑回归,对比如下:
逻辑回归的假设函数(hypothesis):


整个逻辑回归模型的参数就是theta,h(*)是sigmoid函数,输出在0~1之间,一般作为二分类算法。对于具体的问题,找出最合适的theta便是最重要的步骤,这是最优化问题,一般通过定义代价函数,然后最小化代价函数来求解,逻辑回归的代价函数为


最小化J(theta),一般采用梯度下降算法,迭代计算梯度并更新theta。

Softmax的假设函数:

逻辑回归里将-theta*x作为sigmoid函数的输入,得到的是0或者1,两个类别。而softmax有有k个类别,并且将-theta*x作为指数的系数,所以就有e^(-theta_1*x)至e^( -theta_k*x)共k项,然后除以它们的累加和,这样做就实现了归一化,使得输出的k个数的和为1,而每一个数就代表那个类别出现的概率。因此:softmax的假设函数输出的是一个k维列向量,每一个维度的数就代表那个类别出现的概率。

  • 20
    点赞
  • 108
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: Deep learning,深度学习的英文版PDF可以通过网络搜索或在线学术资源网站获取。许多学术出版商如Springer、IEEE Xplore等提供了深度学习相关的英文书籍和论文的电子版。此外,也可以通过在线图书商店如Amazon等购买纸质书籍,然后自行扫描为PDF格式。最好的方法是使用英文关键词进行搜索,如"deep learning PDF",以便找到各种相关的资源。总之,要获取Deep learning的英文PDF,只需利用互联网资源进行搜索,将找到各种适合自己需求的材料。 ### 回答2: Deep learning是深度学习的英文版,是一种机器学习的方法,通过构建和模拟人类神经网络的结构和功能,来实现对数据的自动化处理和分析。 Deep learning的模型通常是由多个神经网络层(即深度)构成的。每个层都通过多个神经元相互连接,形成一个复杂的网络结构。这些神经网络层之间的连接权重会随着训练过程的进行进行调整,以逐渐提高模型的表现和准确度。 Deep learning在许多领域都有广泛的应用。在计算机视觉领域,它可以进行图像识别、目标检测和图像生成等任务。在自然语言处理领域,它可以用于文本分类、机器翻译和语义分析等任务。 Deep learning的优势在于它可以通过大量的数据和计算资源进行训练,并能够从数据中学习并提取更高级别的特征和模式。与传统的机器学习方法相比,Deep learning能够更好地处理具有复杂结构和大量参数的问题,提高模型的泛化能力和预测准确度。 为了学习Deep learning,可以阅读一些经典的英文PDF教材或论文。这些资源包括《Deep Learning》一书,由Ian Goodfellow、Yoshua Bengio和Aaron Courville等人合著的《Deep Learning Tutorial》以及Yann LeCun等人于2015年发表的《Deep Learning》论文。通过阅读这些资源,可以了解到关于Deep learning的理论基础、模型架构和常用算法等知识。 最重要的是,深度学习是一门需要实践的科学,通过实际动手实验和项目实践,才能真正掌握和应用Deep learning。因此,建议通过阅读相关的英文资料,并进行实际的编程练习和项目实践,以加深对Deep learning的理解和应用能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值