算法第三讲(使用队列走迷宫 广度优先)
从2019年9月开始,会把《数据结构》经典的算法介绍一遍。加油,89lovelc
问题介绍
有一个迷宫,如图是这样的,我们从A点出发,是否能够找到一条路找到B点,如果有请打出走的路径。
问题分析
- 处理迷宫问题,现实生活中我们可以使用右手法则尽心。 如果就是一直靠右边的墙走就行。这种也可以使用电脑解决,常用的有两种方式分别是深度优先和广度优先,今天要讲的是广度优先。
- 1)当我们进入到迷宫的时候,我们有4个方向可以走,上下左右,自己走过来的路不在走了。
- 2)然后我们在遍历第二层
- 如图一层一层的遍历,遇到墙壁或者走过的路就不进行走。
算法思想
- 画迷宫
- 我们使用二维数组进行画迷宫,1代表墙,0代表路
- 创建节点代码
- 创建node对象,里面存放坐标index和前驱节点的值(用于反向查找路线,或者找出迷宫的路)
- 创建队列
- 创建队列进行存放节点,存入入口节点
- 队列出站,拿到节点,将节点标记为2,表示已经走过了,将该节点进行上下左右的计算得到新的四个节点,判断是否符合规则,符合规则进入队列,并标记为2
- 队列出队,直到出队节点是出口节点或者为空为止
代码实现
public class Node {
public int x;
public int y;
public Node pre;
public Node(int x, int y, Node pre) {
this.x = x;
this.y = y;
this.pre = pre;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Node node = (Node) o;
return x == node.x &&
y == node.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
public class QueueMaze {
static int[][] arr = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1},
{1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1},
{1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1},
{1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1},
{1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1},
{1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1},
{1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1},
{1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1},
{1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1},
{1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1},
{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1},
{1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1},
{1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1},
{1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1},
{1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1},
{1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1},
{1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0},
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
};
public static void print(int arr1[][]) { //打印地图的方法
for (int i = 0; i < arr1.length; i++) {
for (int j = 0; j < arr1[i].length; j++) {
if (arr1[i][j] == 1) {
System.out.print("▇" + "\t");
} else if (arr1[i][j] == 3) {
System.out.print("*" + "\t");
} else {
System.out.print(" " + "\t");
}
}
System.out.println();
}
}
public static void main(String[] args) {
Node start = new Node(1, 0, null);
Node end = new Node(18, 19, null);
Node path = findPath(start, end);
Node pre = path;
while (pre != null) {
arr[pre.x][pre.y] = 3;
pre = pre.pre;
}
print(arr);
}
static public Node findPath(Node start, Node end) {
//进行放入的队列
Queue<Node> nodes = new LinkedList<Node>();
//进入队列 里面的都进行标记 标记的都是为 2
arr[start.x][start.y] = 2;
nodes.offer(start);
while (true) {
//出队列 判断是否是end节点
Node poll = nodes.poll();
//如果是最后 跳出
if (Objects.equals(poll, end)) {
return poll;
}
//为空就是找不到 end
if (Objects.isNull(poll)) {
return null;
}
//得到该队列的上下左右的节点进入队列中
//上
Node node = existNode(poll.x - 1, poll.y, poll);
if (Objects.nonNull(node)) {
nodes.offer(node);
}
//下
node = existNode(poll.x + 1, poll.y, poll);
if (Objects.nonNull(node)) {
nodes.offer(node);
}
//左
node = existNode(poll.x, poll.y - 1, poll);
if (Objects.nonNull(node)) {
nodes.offer(node);
}
//右
node = existNode(poll.x, poll.y + 1, poll);
if (Objects.nonNull(node)) {
nodes.offer(node);
}
}
}
static private Node existNode(int x, int y, Node node) {
//判断x y所构成的节点是否合法
if (x >= 0 && x <= 19
&& y >= 0 && y <= 19
&& arr[x][y] == 0) {
arr[x][y] = 2;
return new Node(x, y, node);
}
return null;
}
}
运行结果
总结
- 进行广度优先的意思,就是一层一层的遍历,使用队列进行实现,因为是一层一层的遍历,纵向优先所以称之为广度优先。