Baichuan2:Open large-scale language models

Baichuan2是基于2.6万亿token训练的大型语言模型,涉及数据处理、tokenizer优化、位置嵌入、激活与规范化、优化策略、基础设施建设、对齐方法和安全性等方面。训练过程中,使用了RoPE和ALiBi位置嵌入,SwiGLU与xformers注意力,以及NormHead等技术。在对齐策略中,采用了sft和rlhf方法,并设计了多层次的奖励模型以提升多样性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.introduction

baichuan2基于2.6万亿个token进行训练。

2.pre-training

2.1 pre-training data

数据处理:关注数据频率和质量。数据频率依赖于聚类和去重,构建了一个支持LSH型特征和稠密embedding特征的大规模去重和聚类系统,单个文档、段落和句子被去重评分,这些评分然后用于预训练中的数据采样。

2.3 Tokenizer

分词器需要平衡两个关键因素:高压缩率以实现高效的推理,并适当大小的词汇表以确保每个词embedding的充

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值