sklearn(一):鸢尾花

原先有用C++语言,k近邻算法实现预测鸢尾花类型。

from sklearn import datasets    #datasets模块
from sklearn.model_selection import train_test_split    #分离训练集和测试集数据
from sklearn.neighbors import KNeighborsClassifier    #k近邻分类器模块

loaded_data = datasets.load_iris()    #加载鸢尾花数据
X = loaded_data.data #x有4个属性
y = loaded_data.target #y 有三类
print(X[:2,:]) #打印前两个样本属性

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)#测试数据占30%

knn = KNeighborsClassifier() #k近邻分离器
knn.fit(X_train, y_train)    #fit学习函数
print(knn.predict(X_test))    #打印预测结果
print(y_test)                #打印真实结果
print(knn.score(X_test, y_test))    #打印正确率

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值