python
import cv2 as cv
import numpy as np
img = cv.imread("../mm.jpg")
cv.imshow("input", img)
def add_gaussian_noise(image):
noise = np.zeros(image.shape, image.dtype)
m = (15, 15, 15)#mean
n = (30, 30, 30)#stdDev
cv.randn(noise, m, n)
dst = cv.add(image, noise)
cv.imshow("gaussian_noise", noise)
return dst
img_noise = add_gaussian_noise(img)
cv.imshow("gaussian_img", img_noise)
result = cv.fastNlMeansDenoisingColored(img_noise, None, 15, 15, 10, 30)
cv.imshow("result", result)
cv.waitKey(0)
cv.destroyAllWindows()
python中新知识点:
- cv.fastNIMeansDenoisingColored()
c++
#include "all.h"
using namespace std;
using namespace cv;
void MyClass::day025() {
Mat img = myRead("mm.jpg"), result, copy3, copy4;
imshow("input", img);
Mat copy1 = img.clone();
Mat copy2 = img.clone();
copy4 = Mat::zeros(img.size(), img.type());
blur(img, result, Size(5, 5));
imshow("blur", result);
addGuassianNoise(copy1);
addSaltPepperNoise(copy2);
imshow("GuassianNoise", copy1);
imshow("SaltPepperNoise", copy2);
medianBlur(img, copy3, 5);
imshow("median", copy3);
//fastNlMeansDenoisingColored(copy1, copy4, 15, 15, 10, 30);
//imshow("fastDenoising", copy4);
}
void MyClass::addSaltPepperNoise(Mat &img) {
RNG rng(12345);
int row = img.rows;
int col = img.cols;
int num = 10000;
for (int i = 0; i < num; i++) {
int x = rng.uniform(0, row);
int y = rng.uniform(0, col);
if (i % 2 == 1)
img.at<Vec3b>(x, y) = Vec3b(255, 255, 255);
else
img.at<Vec3b>(x, y) = Vec3b(0, 0, 0);
}
}
void MyClass::addGuassianNoise(Mat &img) {
Mat noise = Mat::zeros(img.size(), img.type());
randn(noise, (15, 15, 15), (30, 30, 30));
Mat dst;
add(img, noise, dst);
dst.copyTo(img);
}
c++中新知识点:
- cv::fastNIDenoisingColored()
- randn()