题目来源:http://www.lintcode.com/zh-cn/problem/maximum-subarray/
样例:给出数组[−2,2,−3,4,−1,2,1,−5,3]
,符合要求的子数组为[4,−1,2,1]
,其最大和为6
一:目的:给定一个整数数组,找到一个具有最大和的子数组,返回其最大和。
二:思路1:
提示:i到j的和可以用前j个数的和减去前i-1个数的和
设置三个变量,sum表示前i个数的和,maxsum表示最大和,minsum表示最小和。
指针向后移动一位,考虑要不要新加入这个数时,要比较不加入这个数的maxsum和加入这个数后总共的和减去最小的和的sum-minsum这两个数谁大。
什么叫最小的和:最小和初始化为0,当指针后移,判断新的数字是否加入这个和时,要比较不加入这个数的minsum和加入这个数的minsum谁小,即这个数有没有使最小的和更小,若有则更新最小数。
核心思想是剔除对最大和有副作用的。
三:易错点
maxsum初始化应该为一个很小的数,因为第一次比较maxsum和sum-minsum后都应该取第一个数,如nums={-1}时,取maxsum = 0初始化就不合适
minsum 只会比0小
代码如下
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(int[] nums) {
if(nums == null || nums.length == 0){
return 0;
}
int maxsum = Integer.MIN_VALUE;
//int maxsum = 0;
int minsum = 0;
int sum = 0;
for(int i = 0;i < nums.length; i++){
sum += nums[i];
maxsum = Math.max(maxsum,sum - minsum);
minsum = Math.min(minsum,sum);
}
return maxsum;
}
}
思路2:贪心法
如果添加了第k+1这个元素,由于是连续子序列这个限制,所以如果k+1这个元素之前的和是小于0的,那么对于增大k+1这个元素从而去组成最大子序列是没有贡献的,所以可以把sum 置0。举个例子,-1, -2 ,4, -5, 7这里假定7为第k+1个元素,那么很明显可以看出,之前的sum = -5 + 4 =-1,那么这样对于7来说只会减少它,所以直接置sum = 0, 0 + 7才能得到正确的答案。再拓展这个数组, -1, -2, 4, -5, 7, 1 这里1之前的sum = 7 > 0,对于后面的1来组成最大子序列是有贡献的,所以sum = 7 + 1 =8。再注意一点,只要sum不减到负数,中间出现小于0的元素是没关系的,sum仍然可以继续累加。
public class Solution { public int maxSubArray(int[] A) { if (A == null || A.length == 0){ return 0; } int max = Integer.MIN_VALUE, sum = 0; for (int i = 0; i < A.length; i++) { sum += A[i]; max = Math.max(max, sum); sum = Math.max(sum, 0); } return max; } }