膜太神计划正式启动,这道题不是平常的图论傻逼题,感觉还是值得一做的。第一眼感觉可能要用最短路什么的,然后想一想没有办法处理,那么我们考虑两种情况:当图中有环时,k必定是环长度的约数,那么答案就是全部环的最大公约数和最小的大于3的公约数,若最大公约数小于3则无解;当图中没有环时,k最大就是所有联通块最长链的和,这里的联通块是指把边建成双向后的联通块,最小就是3。
还有一个小问题,就是A->B,C->B时,若从B开始并不能跑出最长链,于是我们建边时要建一条反向边长度为-1。
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define maxn 100010
#define maxm 2000010
using namespace std;
int mx,mn,num,n,m,ans;
int to[maxm],next[maxm],len[maxm],d[maxn],head[maxn];
bool vis[maxn],flag[maxm];
int gcd(int a,int b) {return b==0? a:gcd(b,a%b);}
void addedge(int x,int y,int z)
{
num++;to[num]=y;len[num]=z;next[num]=head[x];head[x]=num;
}
void DFS(int x)
{
vis[x]=1;
for (int p=head[x];p;p=next[p])
if (!vis[to[p]])
{
d[to[p]]=d[x]+len[p];
DFS(to[p]);
}
else ans=gcd(ans,abs(d[x]+len[p]-d[to[p]]));
}
void dfs(int x)
{
mx=max(mx,d[x]);
mn=min(mn,d[x]);
vis[x]=1;
for (int p=head[x];p;p=next[p])
if (!flag[p])
{
flag[p]=flag[p^1]=1;
d[to[p]]=d[x]+len[p];
dfs(to[p]);
}
}
int main()
{
scanf("%d%d",&n,&m);num=1;
for (int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
addedge(x,y,1);
addedge(y,x,-1);
}
memset(vis,0,sizeof(vis));
for (int i=1;i<=n;i++)
if (!vis[i]) DFS(i);
if (ans)
{
if (ans<3) printf("-1 -1\n");
else
{
int x;
for (x=3;x<=ans;x++) if (ans%x==0) break;
printf("%d %d\n",ans,x);
}
return 0;
}
memset(vis,0,sizeof(vis));
for (int i=1;i<=n;i++)
if (!vis[i])
{
mx=mn=d[i]=0;
dfs(i);
ans+=mx-mn+1;
}
if (ans>=3) printf("%d %d\n",ans,3);
else printf("-1 -1\n");
return 0;
}