【bzoj1064】 NOI2008 假面舞会 图论好题

膜太神计划正式启动,这道题不是平常的图论傻逼题,感觉还是值得一做的。第一眼感觉可能要用最短路什么的,然后想一想没有办法处理,那么我们考虑两种情况:当图中有环时,k必定是环长度的约数,那么答案就是全部环的最大公约数和最小的大于3的公约数,若最大公约数小于3则无解;当图中没有环时,k最大就是所有联通块最长链的和,这里的联通块是指把边建成双向后的联通块,最小就是3。

还有一个小问题,就是A->B,C->B时,若从B开始并不能跑出最长链,于是我们建边时要建一条反向边长度为-1。


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define maxn 100010
#define maxm 2000010

using namespace std;

int mx,mn,num,n,m,ans;
int to[maxm],next[maxm],len[maxm],d[maxn],head[maxn];
bool vis[maxn],flag[maxm];

int gcd(int a,int b) {return b==0? a:gcd(b,a%b);}

void addedge(int x,int y,int z)
{
	num++;to[num]=y;len[num]=z;next[num]=head[x];head[x]=num;
}

void DFS(int x)
{
	vis[x]=1;
	for (int p=head[x];p;p=next[p])
	  if (!vis[to[p]])
	  {
	  	d[to[p]]=d[x]+len[p];
	  	DFS(to[p]);
	  }
	  else ans=gcd(ans,abs(d[x]+len[p]-d[to[p]]));
}

void dfs(int x)
{
	mx=max(mx,d[x]);
	mn=min(mn,d[x]);
	vis[x]=1;
	for (int p=head[x];p;p=next[p])
	  if (!flag[p])
	  {
	  	flag[p]=flag[p^1]=1;
	  	d[to[p]]=d[x]+len[p];
	  	dfs(to[p]);
	  }
}

int main()
{
	scanf("%d%d",&n,&m);num=1;
	for (int i=1;i<=m;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		addedge(x,y,1);
		addedge(y,x,-1);
	}
	memset(vis,0,sizeof(vis));
	for (int i=1;i<=n;i++)
	  if (!vis[i]) DFS(i);
	if (ans)
	{
		if (ans<3) printf("-1 -1\n");
		else 
		{
			int x;
			for (x=3;x<=ans;x++) if (ans%x==0) break;
			printf("%d %d\n",ans,x);
		}
		return 0;
	}
	memset(vis,0,sizeof(vis));
	for (int i=1;i<=n;i++) 
	  if (!vis[i])
	  {
	  	mx=mn=d[i]=0;
	  	dfs(i);
	  	ans+=mx-mn+1;
	  }
	if (ans>=3) printf("%d %d\n",ans,3);
	else printf("-1 -1\n");
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值