【bzoj2019】[Usaco2009 Nov]找工作 最短路

一开始还想拆个点建图,后来发现直接把边权+d就可以了,最后记得判一判最长路。


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#define inf 1000000000
#define maxn 1010

using namespace std;

int head[maxn],next[maxn],to[maxn],len[maxn],dis[maxn],q[maxn],cnt[maxn];
bool vis[maxn],flag;
int n,m1,num,s,d,m2;

void addedge(int x,int y,int z)
{
	num++;to[num]=y;len[num]=z;next[num]=head[x];head[x]=num;
}

void spfa()
{
	for (int i=1;i<=n;i++) dis[i]=-inf;
	dis[s]=d;
	int l=0,r=1;
	q[1]=s;vis[s]=1;
	while (l!=r)
	{
		l++;if (l==maxn) l=0;
		int x=q[l];cnt[x]++;
		for (int p=head[x];p;p=next[p])
		  if (dis[x]+len[p]>dis[to[p]])
		  {
		  	dis[to[p]]=dis[x]+len[p];
		  	if (!vis[to[p]])
		  	{
		  		if (cnt[to[p]]==n) {flag=1;return;}
		  		r++;if (r==maxn) r=0;
		  		q[r]=to[p];vis[to[p]]=1;
		  	}
		  }
		vis[x]=0;
	}
}

int main()
{
	scanf("%d%d%d%d%d",&d,&m1,&n,&m2,&s);
	for (int i=1;i<=m1;i++)
	{
		int x,y;
		scanf("%d%d",&x,&y);
		addedge(x,y,d);
	}
	for (int i=1;i<=m2;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		addedge(x,y,d-z);
	}
	spfa();
	if (flag) printf("-1\n");
	else 
	{
		int mx=-inf;
		for (int i=1;i<=n;i++) mx=max(mx,dis[i]);
		printf("%d\n",mx);
	}
	return 0;
}


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值