二分答案
每个点拆成两个点x,x'
每个男生x向x'连一条容量为k的边
每个女生y'向y连一条容量为k的边
源点S向每个男生连一条容量为ans的边
每个女生向汇点T连一条容量为ans的边
对于男生x和女生y,
如果互相喜欢,则x向y连一条容量为1的边
如果不互相喜欢,则x’向y'连一条容量为1的边
若最大流为n*ans则可行,否则不可行
点数4n+2
每个点拆成两个点x,x'
每个男生x向x'连一条容量为k的边
每个女生y'向y连一条容量为k的边
源点S向每个男生连一条容量为ans的边
每个女生向汇点T连一条容量为ans的边
对于男生x和女生y,
如果互相喜欢,则x向y连一条容量为1的边
如果不互相喜欢,则x’向y'连一条容量为1的边
若最大流为n*ans则可行,否则不可行
点数4n+2
边数(4n+n^2)*2
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#define inf 1000000000
#define maxn 310
#define maxm 12010
using namespace std;
int head[maxn],to[maxm],next[maxm],c[maxm],q[maxn],d[maxn];
int n,m,num,s,t,k;
char s1[maxn];
int a[maxn][maxn];
void addedge(int x,int y,int z)
{
num++;to[num]=y;c[num]=z;next[num]=head[x];head[x]=num;
num++;to[num]=x;c[num]=0;next[num]=head[y];head[y]=num;
}
bool bfs()
{
memset(d,-1,sizeof(d));
int l=0,r=1;
q[1]=s;d[s]=0;
while (l<r)
{
int x=q[++l];
for (int p=head[x];p;p=next[p])
if (c[p] && d[to[p]]==-1)
{
d[to[p]]=d[x]+1;
q[++r]=to[p];
}
}
if (d[t]==-1) return 0;
else return 1;
}
int find(int x,int low)
{
if (x==t || low==0) return low;
int totflow=0;
for (int p=head[x];p;p=next[p])
if (c[p] && d[to[p]]==d[x]+1)
{
int a=find(to[p],min(low,c[p]));
c[p]-=a;c[p^1]+=a;
totflow+=a;low-=a;
if (low==0) return totflow;
}
if (low) d[x]=-1;
return totflow;
}
bool Dinic(int x)
{
num=1;
memset(head,0,sizeof(head));
memset(c,0,sizeof(c));
s=0;t=4*n+1;
for (int i=1;i<=n;i++) addedge(s,i,x),addedge(i,n+i,k),addedge(2*n+i,3*n+i,k),addedge(3*n+i,t,x);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (a[i][j]) addedge(i,3*n+j,1);
else addedge(n+i,2*n+j,1);
int ans=0;
while (bfs()) ans+=find(s,inf);
if (ans==n*x) return 1;
else return 0;
}
int main()
{
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
{
scanf("%s",s1+1);
for (int j=1;j<=n;j++)
if (s1[j]=='Y') a[i][j]=1; else a[i][j]=0;
}
int l=1,r=n,ans=0;
while (l<=r)
{
int mid=(l+r)/2;
if (Dinic(mid)) l=mid+1,ans=mid;
else r=mid-1;
}
printf("%d\n",ans);
return 0;
}