AUC及其拓展GAUC

AUC及其拓展GAUC

auc的定义

auc用来评估一个分类器的排序质量,它的物理含义:给定一堆正负样本,随机取一个正样本,一个负样本,学习器将正样本排在负样本前面的概率

auc的计算

具体计算方法:给定m个正样本,n个负样本,则总共油m*n对正负样本。对满足如下条件的样本对进行计数:在所有的样本对中,给定一对正样本和负样本,如果该正样本预测为正的概率大于负样本预测为负的概率,则计数为1,累计基数。将计数和除以m*n,即为auc。

auc=∑m∗nI(P正,P负)m∗n​auc=\frac{\sum_{m*n} I (P_{正},P_{负})}{m*n}​auc=mnmnI(P,P) ,其中 I(P正,P负)={1P正>P负0P正<P负0.5P正=P负​ I (P_{正},P_{负})=\left\{ \begin{aligned} 1 & & P_{正}>P_{负} \\ 0 & &P_{正}<P_{负} \\ 0.5 & & P_{正}=P_{负} \end{aligned} \right. ​I(P,P)=100.5P>PP<PP=P

给定如下例子,请计算auc。

样本标签预测值
A00.1
B00.4
C10.35
D10.8

共有(A,C),(A,D),(B,C),(B,D) 4对样本,其中

  • 比0.8小的负样本有0.4,0.1;
  • 比0.35小的负样本有0.1

auc=35=0.75auc=\frac{3}{5}=0.75auc=53=0.75

GAUC

引入gauc的根本原因:auc在某些情况下,并不能反应模型的好坏。它反应的整体排序质量的好坏,没有结合业务具体的特点。gauc是结合具体业务的特点对auc而进行的改进。

ex:以ctr模型为例,在电商场景下,ctr预估在当前的上下文环境下,用户点击某一个商品(sku)的概率。预估ctr,是希望预估不同的物料(不同的商品)在同一份流量下的得分差异

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值