RDKit | 基于Ward方法对化合物进行分层聚类

本文介绍了如何利用Python、RDKit和scikit-learn的Ward方法对化合物进行分层聚类。首先,讨论了不同类型的聚类方法,接着详细展示了如何生成Morgan指纹并计算距离矩阵,然后使用Ward方法将化合物分为6个类。此外,还探讨了通过树状图和PCA进行聚类结果的可视化,以及主成分分析在数据降维中的应用和累积贡献率的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

从许多化合物构建结构多样的化合物库:

  1. 聚类方法
  2. 基于距离的方法
  3. 基于分类的方法
  4. 使用优化方法的方法

通过使用Ward方法进行聚类从化合物库中选择“各种”化合物,Ward方法是分层聚类方法之一。


导入库

from rdkit import rdBase, Chem, DataStructs
from rdkit.Chem import AllChem
from rdkit.Chem.Draw import rdMolDraw2D, IPythonConsole
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering
%matplotlib inline
print(rdBase.rdkitVersion)

载入数据

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值