NLP(3)| seq to seq 模型

本文深入探讨了Seq2Seq模型及其在自然语言处理任务中的应用,详细讲解了Encoder-Decoder架构,尤其是四层LSTM结构如何提高模型性能。同时,文章介绍了不同Seq2Seq模式,并重点解析了Attention机制的引入过程及其实现步骤,强调其在处理序列到序列任务中的关键作用。

NLP(1) | 词向量one hot编码词向量编码思想

NLP(2) | 中文分词分词的概念分词方法分类CRFHMM分词


  • 什么是Seq2Seq网络? 在Seq2Seq模型中采用了这种 Encoder-Decoder架构,其中 Encoder 是一个RNNCell(RNN ,GRU,LSTM 等) 结构,四层的LSTM结构使得能够提取足够多的特征,使得decode的模型变好
  • 几种Seq2Seq模式

1.学霸模式

2.普通作弊

3.学弱作弊

普通作弊的基础上,回顾上一刻的答案

4.学渣作弊(attention机制)

上课的时候划重点

  • 应用场景 只要是序列到序列都可以用
  • attention机制是怎么引入的?


第一步

第二步:

第三步:

seqtoseq损失函数

损失函数为交叉熵损失函数,一般情况下,深度学习最后用softmax最为分类器一般都会选择用交叉熵损失函数


参考

https://cloud.tencent.com/developer/article/1163104

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值