深度学习在化学反应中的应用

本文探讨了深度学习在化学反应预测和逆向合成路线搜索中的应用。传统的反应预测依赖预定义模式,而现代方法利用数据驱动,特别是深度学习,提高了预测准确性。目前,图卷积模型和NLP序列到序列模型在前向反应预测上表现优秀,但反向预测的挑战依然存在。未来研究将关注合成可能性的生成模型和反向路径搜索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        化学领域,对物理性质的预测模型和化合物的生成模型的研究变得活跃。最近,尝试使用深度学习来预测有机化合物合成所需的化学反应

 

问题设置:反应预测和逆向合成路线搜索

在化学反应中,可以使用具有“ ABC >> D”的反应SMILES进行使反应 A和B 在催化剂 C 反应物 C下反应以生成产物 D的反应。可以表示如下:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值