RDKit | 基于RDKit进行构象搜索:构型异构体生成和MMFF聚类

构象搜索对于理解分子稳定构象及其能量差异至关重要。RDKit提供了一种改进的距离几何方法(ETKDG)进行构象生成和聚类。本文详细介绍了如何使用RDKit进行构象搜索,包括构象生成、消除相同构象异构体以及应用DBSCAN聚类。此外,还展示了使用py3Dmol进行可视化的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

构象搜索

构象搜索是尝试获取大量分子的稳定构象列表并计算以最稳定结构为中心的构象子之间的能量差。

具体而言,通常采取以下步骤。

  1. 在计算机上创建目标分子的结构;
  2. 以某种方式生成大量分子构象异构体;
  3. 使用低级计算方法(例如分子力学和半经验分子轨道方法)对所有构象异构体进行结构优化;
  4. 检查优化的结构并排除相同的构象异构体;
  5. 使用更精确的量子化学计算对获得的构象异构体进行结构优化和能量计算。

某些情况下,在步骤3之前和之后,假设其丰度低,则可以删除具有某个阈值能量或更高阈值能量的结构。无论如何,重点在于如何有效地获得结构多样的构象异构体。

 

构象搜索的重要

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DrugAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值