股票数据读取显示

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdate

path=r"stock2015-2016.csv"

//读取股票csv数据
all_data=pd.read_csv(path)

//截取其中有用的几列
just_close_price=all_data[["Ticker","Date","Adj Close"]]

//数据透视表(会将第一个参数变为索引)
daily_close_px=just_close_price.pivot("Date","Ticker","Adj Close") 

将索引日期字符串转化为日期对象(2016-12-30形式),才能显示日期横坐标 
def convert_date(val): 
    y,m,d=val.split("-")
    return pd.datetime(int(y),int(m),int(d))
daily_close_px.index=daily_close_px.index.map(convert_date)

//绘制某一列
daily_close_px["IBM"].plot() 

 //绘制所有列
daily_close_px.plot()   

//求每日涨跌率,不能直接DataFrame相除,因为截取的部分会保留索引
daily_pencent1=daily_close_px[1:]/daily_close_px.shift(1)

将缺失数据填充为0
daily_pencent2.fillna(0) #填充为0

计算累积收益
cum_daily_return=(1+daily_pencent2).cumprod() 

查看最后盈利情况
cum_daily_return.iloc[-1]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值